跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳舒雅
Shu-Ya Chen
論文名稱: 地形對颱風路徑的影響之數值探討
指導教授: 黃清勇
Ching-Yuang Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣物理研究所
Graduate Institute of Atmospheric Physics
畢業學年度: 90
語文別: 中文
論文頁數: 105
中文關鍵詞: 颱風颱風路徑數值模擬地形
外文關鍵詞: typhoon track, numerical modeling, terrain, typhoon
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘   要
    本研究利用中央大學中尺度數值模式(National Central University Mesoscale Model, NCU-MM ),針對理想地形及真實台灣地形模擬,探討地形對颱風渦旋路徑之影響。模擬結果發現,由東向西移入理想地形之強烈颱風渦旋,不論初始渦旋的半徑大或小,其路徑皆往南偏,若模式中加入冰相之雲微物理參數化法,則強烈颱風渦旋之南偏趨勢有減小現象。另外,假使模式中不加入邊界層參數化及地面摩擦或潛熱釋放作用等,其強度減弱,不論駛流場之速度快或慢,地形大或小,弱颱風路徑皆往北偏。
    對於由南向北移入地形之颱風渦旋,使用真實台灣地形模擬,結果顯示強烈颱風路徑往西偏移。若模式中除去邊界層參數化及地面摩擦效應或潛熱釋放作用等,則弱渦旋路徑反而往東偏移。本研究並模擬颱風渦旋不動,地形往渦旋中心方向移動,探討無駛流場與渦旋交互影響下之渦旋的偏折情形,發現偏移方向與移動渦旋個案之結果相同,但在接近真實大氣之條件下,移動地形的模擬結果之路徑南偏較大。
      此外,由動量收支之分析結果顯示,除去邊界層參數化及地面摩擦或潛熱釋放等作用,西向颱風向北偏移,主要是受到平流效應的影響,其次則為科氏力效應之影響。北向颱風之向東偏移亦是如此。在本研究中,發現有許多個案存在明顯的副中心,而後逐漸發展進而取代原本的渦旋中心,形成路徑不連續。比較所有西向颱風實驗,結果說明除了個案WU4V0_r150_ice以外,皆為不連續路徑,而Vtmax/Nh或U/Nh之數值越小,路徑北偏程度越大。


    目 錄 摘要…………………………………………………………………..…Ⅰ 致謝………………………………………………………………….….Ⅱ 目錄……………………………………………………………….…….Ⅲ 圖表說明………………………………………………………………..Ⅳ 第一章 前言…………………………………………………………..1 第二章 模式簡介……………………………………………………..7 § 2.1 基本控制方程式……………………………………………...7 § 2.2 非靜力擾動氣壓方程……………………………………….10 第三章 模擬結果……………………………………………………13 § 3.1 實驗設計…………………………………………………….13 § 3.2 渦旋路徑…………………………………………………….14 ‧3.2.1 西向颱風………………………………………………..14 ‧3.2.2 北向颱風………………………………………………..18 ‧3.2.3 移動地形………………………………………………..20 § 3.3 渦旋強度及風速…………………………………………….23 § 3.4 最大垂直速度……………………………………………….25 第四章 討論…………………………………………………………28 § 4.1 動量收支…………………………………………………….28 § 4.2 登陸前後渦旋之風場變化………………………………….30 § 4.3 路徑的連續性與副中心…………………………………….33 第五章 結論與未來展望……………………………………………36 參考文獻………………………………………………………………..40 附表……………………………………………………………………..43 附圖……………………………………………………………………..47

    參 考 文 獻
    邱禹銓,2001:地形對似颱風渦旋動力之探討。國立台灣大學,大氣科學研究所,碩士論文,共49頁。
    張靖協,2001:雲微物理參數化法應用於颱風模式中之研究。國立中央大學,大氣物理研究所,碩士論文,共89頁。
    黃清勇、許依萍,1998:台灣地形對理想型颱風環流變化之影響。大氣科學,第26期,第四號,281-324。
    黃毅堅,1999:北向侵台颱風的數值研究。國立中央大學,大氣物理研究所,碩士論文,共160頁。
    謝信良、王時鼎、鄭明典、葉天降,1998:百年(一八九七~一九九六)侵台颱風路徑圖集及其應用—台灣地區颱風預報輔助系統建立之研究(第二階段之三)。中央氣象局氣象科技研究中心,專題研究報告,共497頁。
    Bender, M. A., R. E. Tuleya and Y. Kurihara, 1985:A numerical study of the effect of a mountain range on a landfall tropical cyclones. Mon. Wea. Rev., 113, 567-582.
    ––––, ––––,and ––––, 1987:A numerical study of the effect of island terrain on tropical cyclones. Mon. Wea. Rev., 115, 130-155.
    Businger. J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181-189.
    Chang, S. W.-J., 1982:The orographic effects induced by an island mountain range on propagating tropical cyclones. Mon. Wea. Rev., 110, 1255-1270.
    Duynkerke. P. G., and A. G. M. Driedonks, 1987: A model for the turbulent structure of the stratocumulus-topped atmospheric boundary layer. J. Atmos. Sci., 44, 43-64.
    ––––, 1988: Application of the E-ε turbulence closure model to the neutral and stable atmospheric boundary layer. J. Atmos. Sci., 45, 865- 880.
    Huang, C. Y., and S. Raman, 1989: Application of the E-ε closure model to simulation of mesoscale topographic effects. Boundary Layer Meteor. 49, 169-195.
    ––––, 1993: Study of three dimensional anelastic non-hydrostatic model(in Chinese). Research Report, National Science Council, Taiwan.
    ––––, 1994: Semi-Lagrangian advection schemes and Eulerian WKL algorithms. Mon. Wea. Rev. 122, 1647-1658.
    ––––, and Y. L. Lin, 1997: The evolution of mesoscale vortex impinging on symmetric topography. Proc. Natl. Sci. Counc., 21, 285-309.
    ––––, 2000:A forward-in-time anelastic nonhydrostatic model in a terrain-following coordinate. Mon. Wea. Rev., 128, 2108-2134.
    Kessler, E., 1969:On the distribution and continuity of water substance in atmosphere circulations. Meteorol. Monogr., 32, 1-84.
    Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065-1092.
    ––––, J. Han, D. W. Hamilton, and C.-Y. Huang, 1999:Orographic influences on a drifting cyclone. J. Atmos. Sci., 56, 534-562.
    ––––, D. B. Ensley, S. Chiao, and C.-Y. Huang, 2002a:Orographic influence on rainfall and track deflection associated with the passage of a tropical cyclone. Mon. Wea. Rev., in press.
    ––––, S.-Y. Chen, C. M. Hill, and C.-Y. Huang, 2002b:Control para- meters for track continuity and deflection associated with tropical cyclones over a mesoscale mountain. Conference of the Earth System Sciences. A-22-A-28.
    Liu, Yubao, D.-L. Zhang, and M. K. Yau, 1997:A multiscale numerical study of hurricane Andrew(1992). Part I: Explicit simulation and verification. Mon. Wea. Rev., 125, 3073-3093.
    ––––, ––––, and ––––, 1999: A multiscale numerical study of hurricane Andrew(1992). Part II: Kinematics and inner-core structures. Mon. Wea. Rev., 127, 2597-2616.
    Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problem. Rev. Geophys. Space Phys., 20, 851-875.
    Orlanski. I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys., 21, 251-269.
    Polvani, L. M., 1992:Rossby wave breaking, microbreaking, fila- mentation, and secondary vortex formation: the dynamics of a perturbed vortex. J. Atmos. Sci., 49, 462-476.
    Wang, S.-T., 1980:Prediction of the movement and strength of typhoons in Taiwan and its vicinity (in Chinese). Res. Report 108, National Science Council, Taipei, Taiwan, 100pp.
    Wu, Chun-Chieh, 2001:Numerical simulation of typhoon Gladys(1994) and its interaction with Taiwan terrain using the GFDL hurricane model. Mon. Wea. Rev., 129, 1533-1549.
    Yeh, T. C. and R. L. Elsberry, 1993a:Interaction of typhoon with the Taiwan orography. Part Ⅰ:Upstream track deflection. Mon. Wea. Rev., 121, 3193-3212.
    ––––, and ––––, 1993b:Interaction of typhoon with the Taiwan orography. Part Ⅱ:Continuous and discontinuous tracks across the island. Mon. Wea. Rev., 121, 3213-3233.
    Zhang, D.-L., Y. Liu, and M. K. Yau, 2000:A multiscale numerical study of hurricane Andrew(1992). Part Ⅲ:Dynamically induced vertical motion. Mon. Wea. Rev., 128, 3772-3788.
    ––––, ––––, and ––––, 2001:A multiscale numerical study of hurricane Andrew(1992). Part Ⅳ:Unbalance flows. Mon. Wea. Rev., 129, 92-107.
    Zehnder, J. A., 1993:The influence of large-scale topography on barotropic vortex motion. J. Atmos. Sci., 50, 2519-2532.
    ––––, and M. J. Reeder, 1997:A numerical study of barotropic vortex motion near a large-scale mountain range with application the Sierra Madre. Meteor. Atmos. Phys., 64, 1-19.

    QR CODE
    :::