跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳志霖
Chih-Ling Chen
論文名稱: 放射性廢料處置場緩衝材料之力學性質
Mechanics of Buffer Materials in Nuclear Wastedisposal
指導教授: 黃偉慶
Wei-Hsing Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 99
中文關鍵詞: 緩衝材料靜態壓實雙曲線模式核廢料處置場三軸試驗力學性質
外文關鍵詞: buffer material, static compaction, hyperbolic model, nuclear
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主旨在於以三軸試驗探討膨潤土–碎石之緩衝材料力學性
    質,並建立理論模式來預測緩衝材料之應力–應變曲線。
    為提高試體之均勻性,本文使用分層靜態壓實法來製作試體,以
    探討膨潤土乾密度、碎石體積百分比在不同圍壓下對緩衝材料之力學
    性質影響。由試驗結果顯示,分層靜態壓實法能有效提升試體之均勻
    性。就核廢料處置場中緩衝材料之力學性質而言,提高膨潤土乾密度、
    增加碎石含量體積百分比以及加大圍壓皆能提升緩衝材料之力學強
    度;但在提高膨潤土乾密度及增加碎石含量體積百分比的同時,緩衝
    材料的應力–應變關係也逐漸趨於脆性破壞的形態,這會降低緩衝材
    本文另一重點在於利用複合材料力學中微觀力學模式配合雙曲線
    模式以及靜態壓實試驗,來預測不同乾密度與不同膨潤土體積比的緩
    衝材料在不同圍壓下的力學性質;預測結果與本文試驗結果相較,顯示兩者相當吻合。



    buffer in order to find out it’s mechanical properties and built up predicted
    model of it’s mechanical performance. Bentonite was mixed with different
    volume fraction of crushed granite, and specimens were statically compacted
    to many dry density. To getting uniform specimen, each layer were
    compacted statically until the specimen had been made. Results indicate that
    having high dry density, mixed with more crushed granite content, and in
    high confining pressure will get good shear strength, but it’s energy capacity
    will be lost at the same time.

    III 摘要.......................................................................................................................I Abstract ................................................................................................................... II 目錄.................................................................................................................... III 圖目錄...........................................................................................................VI 表目錄............................................................................................................X 第一章緒論...........................................................................................................1 1-1 研究動機與目的........................................................................................1 1-2 研究方法.....................................................................................................1 1-3 論文規劃.....................................................................................................2 第二章文獻回顧...................................................................................................3 2-1 國內外處置場現況....................................................................................3 2-1-1 美國內華達州雅卡山計畫(Yucca Mountain Project) ...........3 2-1-2 瑞典SFR 深層處置場......................................................................5 2-1-3 深層處置場(Deep Repository) ..................................................6 2-1-4 國內處置場現況................................................................................8 2-2 緩衝材料之功能需求.............................................................................10 2-3 雙曲線模式...............................................................................................12 2-4 莫耳–庫倫破壞準則.............................................................................16 2-5 Hoek–Brown 經驗破壞準則..................................................................17 2-6 顆粒加強材料之彈性模數.....................................................................18 第三章試驗規劃.................................................................................................21 3-1 研究規劃...................................................................................................21 3-2 試驗材料...................................................................................................23 3-2-1 膨潤土(Bentonite) .....................................................................23 3-2-2 MX-80 型膨潤土.............................................................................24 3-2-3 日興土...............................................................................................25 3-2-4 花崗岩...............................................................................................26 3-3 試驗儀器設備..........................................................................................27 3-3-1 電動碎石機......................................................................................27 3-3-2 加壓系統...........................................................................................27 3-3-3 三軸試體模具..................................................................................29 3-3-4 資料擷取系統..................................................................................30 3-3-5 三軸室...............................................................................................30 3-4 試驗方法...................................................................................................32 3-4-1 材料準備...........................................................................................32 3-4-2 三軸試體製作..................................................................................32 3-4-3 三軸壓縮試驗..................................................................................33 3-4-3.1 三軸試體..........................................................................33 3-4-3.2 試體安裝..........................................................................33 3-4-3.3 進行三軸試驗.................................................................34 第四章試驗結果與分析....................................................................................35 4-1 分層壓實與一次壓實.............................................................................35 4-2 緩衝材料之力學性質.............................................................................37 4-2-1 相同膨潤土乾密度下之緩衝材料力學性質..............................38 4-2-2 不同膨潤土乾密度下之緩衝材料力學性質..............................48 4-3 緩衝材料應具備的力學性質之建議.................................................55 第五章模式預測.................................................................................................56 5-1 雙曲線模式之限制................................................................................59 5-2 固定皂土乾密度下碎石含量與Ei 之關係........................................61 5-3 純皂土狀態下乾密度與Ei 之關係.......................................................65 5-4 固定皂土乾密度及碎石含量下圍壓與Ei 之關係.............................69 5-5 碎石含量、皂土乾密度及圍壓與(σ1-σ3)ult 之關係..................72 5-6 實驗數據與模式預測之比較................................................................79 第六章結論與建議............................................................................................94 6-1 結論...........................................................................................................94 6-2 建議.........................................................................................................96 參考文獻................................................................................................................97


    大學土木工程研究所,台南,(1992)。
    2. 卓智聰,「放射性廢料處置場緩衝材料之物理特性及配方研
    究」,碩士論文,國立中央大學土木系,中壢,(1999)。
    3. 陳衛里,「用過核燃料直接處理」,核能季刊,第三期,第3-
    4. 張瑟稀,從雅卡山經驗談放射性廢料最終處置,核研季刊,
    第二十七期,第77-81 頁,(1998)。
    5. 葉有財,「日本放射性廢料之永久處理」,核能天地,10 月號,
    第26-27 頁,(1994)。
    6. 葉佐仁,「放射性廢料處置場回填材料之物理特性及配方研
    究」,碩士論文,國立中央大學土木系,中壢,(1998)。
    7. 劉尚志、林鴻旭、焦自強、張璞,「高放射性廢料終極處置—
    工程障壁之探討」,原子能委員會核能彙刊,第二十五卷,
    第四期,第20~37 頁,民國七十八年八月。
    8. Radhakrishna, H. S., “Thermal Properties of Clay-Based Buffer
    Materials for a Nuclear Fuel Waste Disposal Vault,” AECL
    Report, Pinawa, Canada, (1984).
    9. Borgesson, L., O. Karnland, and L. E. Johannesson, “Modelling
    of the Physical Behaviour of Clay Barriers Close to Water
    Saturation,” Engineering Geology, Vol. 41, pp. 127-144(1994).
    10. Borgesson, L., A. Fredrikson, and L. E. Johannesson, “Heat
    Conductivity of Buffer Materials,” SKB Report, Lund, Sweden,
    (1994).
    11. Branley, W., J. Graham,G. X. Tang, and D. Dixon, “Influence of
    Pressure, Saturation, and Temperature on Behavior of
    Unsaturated Sand-Bentonite,” Can. Geotech. J. Vol. 35, pp. 194-
    205(1998).
    12. Geneste, P., M. Raynal, R. Atabek, M. Dardaine, and J. Oliver,
    “Characterization of a French Clay Barrier and Outline of the
    Experimental Programme,” Engineering Geology, Vol. 28, pp.
    443-454(1990).
    13. Gera, F., T. Hueckel, and A. Peano, “Critical Issues in Modelling
    the Long-Term Hydro-thermo-mechanical Performance of
    Natural Clay Barriers,” Engineering Geology, Vol. 41, pp. 17-
    33(1995).
    14. Gray, M. N., S. C. H. Cheung, and D. A. Dixon, ”The Influence
    of Sand Content on Swelling Pressure and Structure Developed
    in Statically Compacted Na-Bentonite,” Atomic Energy of
    Canada Limited, Report AECL-7825, Pinawa, Man., (1984).
    15. Komine, H., and N. Ogata, “Experimental Study on Swelling
    Characteristics of Compacted Bentonite,” Can. Geotech. J. Vol.
    31, pp. 478-490 (1994).
    16. Nakashima, H., T. Ishii, and T. Nagasawa, “Method of Designing
    Bentonite/Sand Mixture to Achieve the Target Permeability,” et
    al. Mat. Res. Soc. Symp. Proc., Vol. 353, pp. 247-252 (1995).
    17. OCRWM, “Viability Assessment of a Repository at Yucca
    Mountain,” USDE, North Las Vegas, U. S., (1998).
    18. Pigford, T. H., “The Engineered Barrier System:Performance
    Issues, ” Mat. Res. Soc. Symp. Proc., Vol. 294, pp. 657-662
    (1993).
    19. Radhakrishna, H. S., “Thermal Properties of Clay-Based Buffer
    Materials for a Nuclear Fuel Waste Disposal Vault,” AECL
    Report, Pinawa, Canada, (1984).
    20. Radhakrishna, H. S., and H. T. Chan, “Thermal and Physical
    Properties of Candidate Buffer-Backfill Materials for a Nuclear
    Fuel Waste Disposal Vault,” Can. Geotech. J. Vol. 26, pp. 629-
    639 (1989).
    21. Wardrop, W. L., and Associates Ltd., “Buffer and Backfilling
    Systems for a Nuclear Waste Disposal Vault,” AECL Report,
    Pinawa, Canada, (1985).
    22. INER, 經濟部核能研究所年度簡報資料,未出版(1999)。
    23. 清蔚園,「什麼是放射性廢料?」,
    http://vm.nthu.edu.tw/science/shows/nuwaste/index.html,
    2000。
    24. OCRWM, http://www.rw.doe.gov/homejava/homejava.htm,
    2000.
    25. SKB, http://www.skb.se/engelska/skb/index.html, 2000.

    QR CODE
    :::