| 研究生: |
李仲恩 Jhong-En Li |
|---|---|
| 論文名稱: |
深冷電化學銅矽鍵合之研究 Bonding of copper and silicon at -70°C by electrochemistry |
| 指導教授: |
李天錫
Benjamin Tien-Hsi Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 深冷處理 、電化學 、晶圓鍵合 、銅矽鍵合 、銅離子擴散 |
| 外文關鍵詞: | cryogenic treatment, electrochemistry, Wafer bonding process, Copper-silicon bonding, Cu ion diffusion |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究發現以低溫電化學方式,能夠進行銅與矽晶圓直接鍵合。透過
低溫環境,降低溫度對擴散的影響,探討電場驅動擴散反應。
晶圓鍵合技術一般需要極度光滑之試片表面與非常高溫的熱處理,本
實驗發現以電化學法能夠產生直接鍵合,不須經過拋光與退火等程序,且
其鍵合強度極高。研究中發現更勝於銅抗拉強度之鍵合,使二試片分離時
部分銅片破裂並殘留於矽晶表面。
除了表面鍵合外,本論文也將探討電場引導的擴散現象。一般而
言,-70℃之環境下,上不可能出現明顯及快速的擴散現象,但實驗中僅以
30分鐘的實驗時間,產生了深達數微米的銅離子擴散現象。
Wafer bonding technology generally require high-temperature heat
treatment or extremely smooth surface condition. However, in our recent
research, a strong bonding phenomenon between copper and silicon wafer
was discovered in a liquid-nitrogen submerged device, with aid from
external electric field. Minimum surface roughness and high-temperature
heat treatment are not required in such bonding technique.
Furthermore, if the copper-silicon interface was separated by force, a
thin layer of copper on silicon wafer can be visible to the naked eyes.
Indicate the bonding strength is stronger than the tensile stress of copper,
therefore leaving a thin layer after been split apart.
In addition, this thesis will also discuss the abnormally rapid diffusion
of positively charged copper ions in silicon crystal at -70℃. Generally,
diffusion is extremely temperature sensitive. Yet in our bonding
experiment, rapid diffusion of copper ions can be observed by SIMS. We
suggest that external electric field can provide the kinetic energy, which is
normally provided by temperature, to ions in order to surpass activation
energy.
1. Gill, V., P.R. Guduru, and B.W. Sheldon, Electric field induced surface diffusion and
micro/nano-scale island growth. International Journal of Solids and Structures,
2008. 45(3): p. 943-958.
2. Istratov, A.A., et al., Diffusion, solubility and gettering of copper in silicon. Materials
Science and Engineering: B, 2000. 72(2): p. 99-104.
3. Estreicher, S.K., Rich chemistry of copper in crystalline silicon. Physical Review B,
1999. 60: p. 5375-5382.
4. Ward, W.J. and K.M. Carroll, Diffusion of Copper in the Copper‐Silicon System.
Journal of The Electrochemical Society, 1982. 129(1): p. 227-229.
5. Q.-Y. Tong , U. Gösele , Semiconductor Wafer Bonding: Science and Technology,
John Wiley, New York, 1999
6. Balogh, Z. and G. Schmitz, 5 - Diffusion in Metals and Alloys, in Physical Metallurgy
(Fifth Edition), D.E. Laughlin and K. Hono, Editors. 2014, Elsevier: Oxford. p. 387-
559.
7. Soffa, W.A. and D.E. Laughlin, 8 - Diffusional Phase Transformations in the Solid
State, in Physical Metallurgy (Fifth Edition), D.E. Laughlin and K. Hono, Editors.
2014, Elsevier: Oxford. p. 851-1020
8. Chien P-Y, Cheng L, Liu C-Y, Li J-E, Lee BT-H. Fusion bonding of copper and silicon
at -70 °C by electrochemistry. Acta Materialia. 2021;204:116486.
9. Shabani M, Yoshimi T, Abe H. Low-Temperature Out-Diffusion of Cu from Silicon
Wafers. Journal of The Electrochemical Society. 1996;143:2025-9.
10. Gao X, Jia Y, Li G, Ma J, Wang Y. The Diffusion and Interfacial Reaction of
Cu/Si(100) Systems. Advanced Materials Research. 2011;287-290:2302-7.