跳到主要內容

簡易檢索 / 詳目顯示

研究生: 何祈恩
Chi-An Ho
論文名稱: 符合循環經濟概念之全固態可撓性超級電容器
All Solid-states Flexible Supercapacitor Towards the Circular Economy
指導教授: 孫亞賢
Ya-Sen Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 75
中文關鍵詞: 循環經濟全固態超級電容二氧化釕蒙托土紙牌屋仿貝
外文關鍵詞: House-of-cards, Nacre-like, All solid-states
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將循環經濟和仿生材料概念帶入超級電容的系統中,利用奈米複合材料其包含蒙脫土(MMT)、聚乙烯醇(PVA)、聚二氧乙基噻吩:聚苯乙烯磺酸(PEDOT:PSS)和二氧化釕(RuO2)奈米粒子,來製造環保全固態可撓式超級電容器。透過X光繞射、X光顯微術、掃描式電子顯微術、X光吸收光譜、力學測試、接觸角和電化學分析有系統探討此環保全固態可撓式超級電容器之結構-性質-性能之關係。其中,我們分別利用蒙脫土吸附釕金屬離子於層狀結構內的特性,透過方法A和B合成二氧化釕(RuO2)奈米粒子,而其奈米粒子尺寸與分布也分別導致蒙托土形成紙牌屋(House of card)結構以及仿珍珠貝 (Nacre-like)結構於電極內部。我們發現紙牌屋結構電極具有較好的電化學性能,但是其力學性質則稍差於仿珍珠貝結構電極。亦發現紙牌屋結構電極其電容值可達568 mF/cm2 (71F/g),也優於過去文獻曾報導過RuO2全固態可撓式超級電容器。此外,其能量密度和電流密度分別為40.6 Wh/cm2 (10.2Wh/kg)和4 mW/cm2 (1000W/kg)。透過回收再製後之超級電容器其效能可達至原電容器之70%,成功落實了循環經濟之概念。


    In this study, we introduce two concepts of circular economy and biomimetic materials into nanocomposite electrodes for fabricating all-solid-state flexible supercapacitors (ssFSCs). The designed nanocomposites were composed of montmorillonite (MMT), ruthenium dioxide nanoparticles (RuO2 NPs), polyvinyl alcohol (PVA) and Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). We investigated structure-property-performance relationships of the ECO-firendly all-solid-state flexible supercapacitor using X-ray diffraction, transmission X-ray microscope, X-ray absorption spectroscopy, electron microscope, testing machine, contact angle and potentiostat–galvanostat. Attributing to RuO2 NPs size and their distribution in the structural electrodes, a house-of-cards structure and a nacre-like structure were respectively obtained from synthesized method A and method B. We found that the house-of-cards structural ssFSC features higher performance of storage energy but lower mechanical strength than the nacre-like structural ssFSC. The capacitance of the house-of-cards ssFSC is up to 568 mF/cm2 (71 F/g), which is also better than the RuO2-based ssFSCs. Furthermore, their maximum energy and power densities are respectively calculated as 40.6 Wh/cm2 (10.2Wh/kg) and 4 mW/cm2 (1000W/kg). Concerning recycling of electrodes for the circular economy, storage energy performance of the recycled devices can perform about 70% of the original devices.

    摘要 I ABSTRACT II 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 超級電容原理與種類 2 1.2.1 電雙層電容器 2 1.2.2 擬電容器 3 1.2.3 混合式超級電容 4 1.3 電化學儲能裝置 5 1.4 可撓性超級電容 6 1.5循環經濟 7 第二章 研究動機及目的 9 2.1 電極設計與材料選擇 10 2.2 材料性質 12 2.2.1 聚二氧乙基噻吩:聚苯乙烯磺酸 (PEDOT:PSS) 12 2.2.2 蒙托土 (Montmorillonite, MMT) 14 2.2.3 聚乙烯醇 (Poly vinyl alcohol,PVA) 15 第三章 實驗儀器以及藥品 16 3.1 實驗儀器 16 3.1.1 定電位–定電流儀 (Potentiostat–Galvanostat) 16 3.2 同步輻射先進光源應用 16 3.2.1 X光繞射儀 (X-ray Diffraction, XRD) 17 3.2.2 穿透式X光顯微技術 (Transmission X-ray Microscope, TXM) 17 3.2.3 X光吸收光譜 (X-ray Absorption Spectroscopy, XAS) 18 3.3 實驗藥品與器具 20 3.3.1蒙脫土(Montmorillonite) 20 3.3.2導電高分子(PEDOT:PSS) 20 3.3.3聚乙烯醇 (Polyal vinyl alcohol, PVA) 20 3.3.4二三氟甲基磺醯亞胺鋰 (Bis(trifluoromethane) sulfonamide lithium salt) 20 3.3.5氯化釕(III)水合物 20 3.3.6 硫酸 20 3.3.7 異丙醇 21 3.3.8 高壓釜 21 第四章 樣品製備與實驗流程 22 4.1 二氧化釕/蒙脫土複合材 (RUO2 /MMT) 22 4.2 電極製作 23 4.3 電解質配製 23 4.4 超級電容裝置製作 24 4.5 回收之超級電容並重新製備 24 第五章 實驗結果與討論 25 5.1 RUO2/MMT可撓電極之結構鑑定 25 5.1.1 紙牌屋結構與仿貝結構 26 5.2 RUO2/MMT/PEDOT:PSS(STEC)/PVA電極之物理性質測試 33 5.2.1 應力與應變 33 5.2.2 扭力測試 35 5.2.3 耐水性測試 37 5.3.4 導電度 40 5.3 RUO2/MMT電容器之電化學測試 42 5.3.1 RuO2/MMT電極之電化學測試 42 5.3.2 RuO2/MMT電容器 44 5.3.3 臨場快速X光吸收光譜 46 5.3.4 酸洗處理之RuO2/MMT電容器 48 5.4 RUO2/MMT電容器之電極回收 51 第六章 結論 56 第七章 參考資料 57

    1 Conway, B. E., Electrochemical supercapacitors: scientific fundamentals and technological applications., Springer Science & Business Media, 2013.
    2 D. P. Dubal, N. R. Chodankar, D. H. Kim, & P. Gomez-Romero, “Towards flexible solid-state supercapacitors for smart and wearable electronics.”, Chem. Soc. Rev.,
    Vol 47, pp. 2065-2129, 2018.
    3 P. Simon, & Y. Gogotsi, “Materials for electrochemical capacitors.”, J NANOSCI NANOTECHNO, Vol 7, pp. 320-329, 2009.
    4 B. E. Conway, “Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage”, J. Electrochem. Soc., Vol 138, pp. 1539-1548, 1991.
    5 A. Balakrishnan, & K. Subramanian, Nanostructured ceramic oxides for supercapacitor application., CRC Press, 2014.
    6 Wikipedia contributor. Supercapacitor. 取自https://en.wikipedia. org/wiki /Super capacitor。
    7 S. Guo, F. Wang, H. Chen, H. Ren, R. Wang, & X. Pan, “Preparation and performance of polyvinyl alcohol-based activated carbon as electrode material in both aqueous and organic electrolytes”, J SOLID STATE ELECTR, Vol 16, pp. 3355-3362, 2012.
    8 A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse & D. Aurbach, “Carbon-based composite materials for supercapacitor electrodes: a review”, J. Mater. Chem. A, Vol 5, pp. 12653, 2017.
    9 V. Augustyn, P. Simon, & Dunn, B. “Pseudocapacitive oxide materials for high-rate electrochemical energy storage.” Energy Environ. Sci. Vol 7, pp.1597, 2014.
    10 C. C. Hu, K. H. Chang, M. C. Lin, & Y. T. Wu, “Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors.”, Nano Letters, Vol 6, pp. 2690–2695, 2006.
    11 J. Zhang, D. Jiang, B. Chen, J. Zhu, L. Jiang, & H. Fang, “Preparation and Electrochemistry of Hydrous Ruthenium Oxide/Active Carbon Electrode Materials for Supercapacitor.”, J ELECTROCHEM SOC, Vol 148, pp. 1362-1367, 2001.
    12 R. S. Kate, S. A. Khalate, & R. J. Deokate, “Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: A review”, J ALLOY COMPD, Vol 734, pp. 89-111, 2018.
    13 J. G. Wang, F. Kang, & ,B. Wei, “Engineering of MnO2-based nanocomposites for high-performance supercapacitors”, PROG MATER SCI, Vol 74, pp. 51-124, October 2015.
    14 B. K. Kim, S. Sy, A. Yu, & J. Zhang, “Electrochemical Supercapacitors for Energy Storage and Conversion”, John Wiley & Sons, pp.1-25, July 2015.
    15 X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu, & Z. L. Wang, “ Wearable Self-Charging Power Textile Based on Flexible Yarn Supercapacitors and Fabric Nanogenerators.” Adv. Mater., Vol 28, pp. 98–105, 2016.
    16 W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, & X. M. Tao, “Fiber‐Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications.” Adv. Mater., Vol 26, pp. 5310–5336, 2014.
    17 環保署,循環經濟-資源循環網,取自https://smmdb.epa.gov.tw/circulation/ index。
    18 A. Divyashree, S. A. B. A. Manaf, S. Yallappa, K. Chaitra, N. Kathyayini, & G. Hegde, “Low cost, high performance supercapacitor electrode using coconut wastes: eco-friendly approach.” J. Energy Chem. Vol 25, pp. 880-887, 2016.
    19 L. Wang, G. Mu, C. Tian, L. Sun, W. Zhou, P. Yu, J. Yin, & H. Fu, “Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors.”, ChemSusChem, Vol 6, pp. 880-889, 2013.
    20 S. Bhoyate, C. K. Ranaweera, C. Zhang, T. Morey, M. Hyatt, P. K. Kahol, M. Ghimire, S. R. Mishra, & R. K. Gupta, “Eco-Friendly and High Performance Supercapacitors for Elevated Temperature Applications Using Recycled Tea Leaves.”, Global challenges, Vol 1, pp. 1-12, 2017.
    21 S. Lv, F. Fu, S. Wang, J. Huang, & L. Hu, “Eco-friendly wood-based solid-state flexible supercapacitors from wood transverse section slice and reduced graphene oxide.” ELECTRON MATER LETT, Vol 11, pp. 633-642, 2015.
    22 B. Liu, L. Zhang, P. Qi, M. Zhu, G. Wang, Y. Ma, X. Guo, H. Chen, B. Zhang, Z. Zhao, B. Dai, & Feng Yu, “Nitrogen-Doped Banana Peel–Derived Porous Carbon Foam as Binder-Free Electrode for Supercapacitors.” J. Nanomater. Vol 6, pp. 18-28, 2016.
    23 Y. S. Yun, M. H. Park, S. J. Hong, M. E. Lee, Y. W. Park, & H. J. Jin, “Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors.” ACS APPL MATER INTER, Vol 7, pp. 3684-3690, 2015.
    24 X.Tian, C.Yang, L. Si, & G. Si, “Flexible self-assembled membrane electrodes based on eco-friendly bamboo fibers for supercapacitors.” J. Mater. Sci.: Mater. Electron. Vol 28, pp.15338-15344, 2017.
    25 I. Shown, A. Ganguly, L. C. Chen & K. H. Chen. “Conducting polymer-based flexible supercapacitor.” ENERGY SCI ENG, Vol 3, pp. 2–26, 2015.
    26 Y. Wang, C. Zhu, R. Pfattner, H. Yan, L. Jin, S. Chen, F. Molina-Lopez, F. Lissel, J. Liu, N. I. Rabiah, Z. Chen, J. W. Chung, C. Linder, M. F. Toney, B. Murmann & Z. Bao, “A highly stretchable, transparent, and conductive polymer.” Science Advances, Vol 3, pp. 1-10, March 2017.
    27 T. Horii, Y. Li, Y. Mori, & H. Okuzaki, “Correlation between the hierarchical structure and electrical conductivity of PEDOT:PSS.”, Polym. J. Vol 47, pp. 695 2015.
    28 F. Barbier, G. Duc, & M. Petit-Ramel, “Adsorption of lead and cadmium ions from aqueous solution to the montmorillonite/water interface.” COLLOID SURFACE A, Vol 166, pp. 153-159, 2000.
    29 R. A. Barrer, & D. MacLeod, “Activation of montmorillonite by ion exchange
    and sorption complexes of tetra-alkyl ammonium montmorillonites.”, J. Chem.Soc. Faraday Trans., Vol 51, pp.1290-1300, 1955.
    30 J. Adams, “Synthetic organic chemistry using pillared, cation-exchanged and acid-treated montmorillonite catalysts—A review.”, Applied Clay Science, Vol 2, pp. 309-342, 1987.
    31 J. Mouzon, I. U. Bhuiyan, & J. Hedlund, “The structure of montmorillonite gels revealed by sequential cryo-XHR-SEM imaging.”, J. Colloid Interface Sci., Vol 465, pp. 58-66, 2016.
    32 國家同步輻射中心,什麼是同步加速器光源?,取自https://www. nsrrc.org.tw/chinese/lightsource.aspx。
    33 S. R. S. Kumar, N. Kurra & H. N. Alshareef. “Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films.”, J. Mater. Chem. C, Vol 4, pp. 215-221, 2016.
    34 V. K. A. Muniraj, P. K. Dwivedi, P. S. Tamhane, S. Szunerits, R. Boukherroub, & M. V. Shelke, “High-Energy Flexible Supercapacitor Synergistic Effects of Polyhydroquinone and RuO2·xH2O with Microsized, Few-Layered, Self-Supportive Exfoliated-Graphite Sheets”, ACS Appl. Mater. Interfaces, Vol 11, pp.18349−18360, 2019.
    35 Y. Liu, B. Weng, J. M. Razal, Q. Xu, C. Zhao, Y. Hou, S. Seyedin, R. Jalili, G. G. Wallace & J. Chen, “High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films”, Sci. Rep, Vol 5, 17045, 2015.
    36 K. Qi, R. Hou, S. Zaman, Y. Qiu, B. Y. Xia, & H. Duan, “Construction of Metal−Organic Framework/Conductive Polymer Hybrid for All-Solid-State Fabric Supercapacitor”, ACS Appl. Mater. Interfaces, Vol 10, pp. 18021–18028, 2018.
    37 J.J. Alcaraz-Espinoza, H.P. de Oliveira, “Flexible supercapacitors based on a ternary composite of polyaniline/polypyrrole/graphite on gold coated sandpaper”, Electrochimica Acta, Vol 274, pp. 200-207, June 2018.
    38 X. Zang, X. Li, M. Zhu, X. Li, Z. Zhen, Y. He, K. Wang, J. Wei, F. Kang & H. Zhu, “Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes.”, Nanoscale, Vol 7, pp. 7318-7322, 2015.
    39 C. J. Zhang, T. M. Higgins, S. H. Park, S. E. O'Brien, D. Long, J. N. Coleman & V. Nicolosi, “Highly Flexible and Transparent Solid-State Supercapacitors Based on RuO2/PEDOT:PSS Conductive Ultrathin Films”, Nano Energy, Vol 28, pp. 495−505, 2016.
    40 K. H. Chang, C. C. Hu, & C. Y. Chou, “Textural and Capacitive Characteristics of Hydrothermally Derived RuO2âxH2O Nanocrystallites: Independent Control of Crystal Size and Water Content.”, Chem. Mater., Vol 19, pp. 2112-2119, 2007.
    41 P. P. Sarmah, & D. K. Dutta, “Chemoselective reduction of a nitro group through transfer hydrogenation catalysed by Ru0-nanoparticles stabilized on modified Montmorillonite clay.”, Curr. Green Chem., Vol 14, pp. 1086–1093, 2012.
    42 X. Yan, H. Liu, & K. Y. Liew, “Size control of polymer-stabilized ruthenium nanoparticles by polyol reduction.”, J. Mater. Chem., Vol 11, pp. 3387–3391, 2001.

    QR CODE
    :::