| 研究生: |
陳榮秋 Jung-Chiu Chen |
|---|---|
| 論文名稱: |
台中地區能見度與消光係數、質量散光效率及物化特性之關係:硝酸鹽生成對能見度劣化之影響 Taichung visibility relationship between extinction coefficient, mass scattering efficiency and physicochemical characteristics : Impact of nitrate formation on visibility degradation |
| 指導教授: |
蕭大智
Ta-Chih Hsiao 江康鈺 Kung-Yuh Chiang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 能見度 、消光係數 、質量散光效率 、IMPROVE 、硝酸鹽 |
| 外文關鍵詞: | Visibility, Extinction coefficient, Mass scattering efficient, IMPROVE algorithm, Nitrate |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鑒於民眾對於改善能見度的期盼、能見度無逐時觀測以及當前研究缺乏能見度劣化與氣膠物化特性之關係的全面性分析,本研究在台中市東海大學的2017年十月至2019年八月進行高時間解析度的觀測,在移動式測站IMPACT (Integrated Measurements of Pollution and Aerosol Composition & Transformation)放入質量濃度、光學係數、粒徑分布、水溶性無機鹽離子、重金屬元素、微量氣體與氣象狀態等面向的多台儀器進行觀測,使用化學散光模式(IMPROVE, The Interagency Monitoring of Protected Visual Environments)以及事件演變階段的分析方法來探討台中能見度劣化之成因。
在總觀測期間內發現光學機制由散光主導,能見度低值事件(消光係數上升)不僅與「量」有關(粒狀污染物濃度增加),同時亦受「質」的影響(單位質量的微粒消光效率上升)。在季節變化中,以夏秋兩季消光係數較低;冬春兩季較高。在風花圖的結果發現低風速下容易產生高消光係數、SSA(single scattering Albedo)與MSE(Mass scattering efficiency)。由乾淨情境(Clean)與事件期(Event)分析兩年冬季的化學散光組成,發現能見度劣化期間的硝酸鹽比例較乾淨期間大幅增加(12%增至43%),此外主要散光成分的硫酸鹽(18%)、硝酸鹽(43%)與有機物(32%)的粒徑有明顯增長,分別在400 – 600 nm、200 – 500 nm與100 – 300 nm的範圍內,造成散光效應促使能見度降低之結果。在事件演變階段(Stage 1與Stage 2)的氣象條件屬於低風速(< 1 m/s)與高溫的情況,在不同相對濕度下會出現對應的硝酸鹽生成機制,白天的低濕度(70%)適合氣相反應;晚間的高濕度(90%)則偏向異相反應,造成反應機制不同,但產物與劣化表現相似的結果。
In Taiwan, many studies have been carried out over the past to survey the reasons of visibility degradation, but there still lack of the comprehensive analysis in aerosol physical-chemical characteristics. This study established a high time-resolution monitoring system and seted the trailer station – IMPACT at the campus of Tunghai University in Taichung during October 2017 to August 2019. Measurement items include the mass concentration, extinction coefficient(bext), size distribution, water-soluble inorganic ions, heavy metal elements, tracer gas and meteorological data in two years. In this study, to evaluate the reasons of visibility degradations, we used the revised IMPROVE algorithm and the stage variation of events to estimate the chemical components and extinction coefficient (bext) of fine particulate matter (PM2.5).
During the observation period, the extinction mechanism is dominated by the scattering particles. The low visibility events (high bext) are not only caused by high PM2.5 concentrations but also affected by high mass extinction efficiency (MEE). In seasonal variations, the bext is lower in summer and autumn than in winter and spring. Based on the wind-roses analysis, lower wind speed (WS < 1 m/s) would cause higher bext, single scattering Albedo (SSA), and mass scattering efficiency (MSE) during each season. In the IMPROVE chemical scattering of event analysis, the main contributor to bext is Nitrate (43%), followed by OM (32%) and Sulfate (18%). Nitrate would get a higher proportion (12% to 43%) in visibility degradation than clean case. Furthermore, the particle size range would become larger and concentrated, Nitrate is 200 to 500 nm, OM is 100 to 300 nm and Sulfate is 400 to 600 nm. While the increasing particle size make higher scattering effect and lower visibility. In stage 1 and stage 2 of event, wind speed is lower (< 1 m/s) and the temperature is higher than the clean case. The different relative humidity (RH) would correspond to those Nitrate formation-reaction. Low RH (70%) during the daytime is suitable for gas-phase reactions, and high RH (90%) during the nighttime is appropriate for heterogeneous reactions. Surprisingly, daytime and nighttime mechanisms are different, but the final situation cause visibility degradation and the same produce - nitrate.
Bäumer, D., S. Versick and B. Vogel (2008). Determination of the visibility using a digital panorama camera. Atmospheric Environment 42(11): 2593-2602.
Cao, J.-j., Q.-y. Wang, J. C. Chow, J. G. Watson, X.-x. Tie, Z.-x. Shen, P. Wang and Z.-s. An (2012). Impacts of aerosol compositions on visibility impairment in Xi'an, China. Atmospheric Environment 59: 559-566.
Carrico, C. M. (2003). Urban aerosol radiative properties: Measurements during the 1999 Atlanta Supersite Experiment. Journal of Geophysical Research 108(D7).
Carrico, C. M., M. H. Bergin, J. Xu, K. Baumann and H. Maring (2003). Urban aerosol radiative properties: Measurements during the 1999 Atlanta Supersite Experiment. Journal of Geophysical Research: Atmospheres 108(D7).
Chamaillard, K., C. Kleefeld, S. G. Jennings, D. Ceburnis and C. D. O’Dowd (2006). Light scattering properties of sea-salt aerosol particles inferred from modeling studies and ground-based measurements. Journal of Quantitative Spectroscopy and Radiative Transfer 101(3): 498-511.
Cheng, Z., J. Jiang, C. Chen, J. Gao, S. Wang, J. G. Watson, H. Wang, J. Deng, B. Wang, M. Zhou, J. C. Chow, M. L. Pitchford and J. Hao (2015). Estimation of Aerosol Mass Scattering Efficiencies under High Mass Loading: Case Study for the Megacity of Shanghai, China. Environmental Science & Technology 49(2): 831-838.
Cheng, Z., X. Ma, Y. He, J. Jiang, X. Wang, Y. Wang, L. Sheng, J. Hu and N. Yan (2017). Mass extinction efficiency and extinction hygroscopicity of ambient PM2.5 in urban China. Environ Res 156: 239-246.
Das, S., B. K. Brimley, T. E. Lindheimer and A. Pant (2017). Safety impacts of reduced visibility in inclement weather, Center for Advancing Transportation Leadership and Safety (ATLAS Center).
Garg, A., N. Gupta and S. Tyagi (2019). Levels of benzene, toluene, ethylbenzene, and xylene near a traffic-congested area of East Delhi. Environmental Claims Journal 31(1): 5-15.
Griffing, G. W. (1980). Relations between the prevailing visibility, nephelometer scattering coefficient and sunphotometer turbidity coefficient. Atmospheric Environment (1967) 14(5): 577-584.
Hand, J. and W. Malm (2007). Review of aerosol mass scattering efficiencies from ground‐based measurements since 1990. Journal of Geophysical Research: Atmospheres 112(D16).
Hand, J. L., A. J. Prenni, B. A. Schichtel, W. C. Malm and J. C. Chow (2019). Trends in remote PM2.5 residual mass across the United States: Implications for aerosol mass reconstruction in the IMPROVE network. Atmospheric Environment 203: 141-152.
Jing, J. S., Y. F. Wu, J. Tao, H. Z. Che, X. G. Xia, X. C. Zhang, P. Yan, D. M. Zhao and L. M. Zhang (2015). Observation and analysis of near-surface atmospheric aerosol optical properties in urban Beijing. Particuology 18: 144-154.
Jung, J., H. Lee, Y. J. Kim, X. Liu, Y. Zhang, J. Gu and S. Fan (2009). Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign. Journal of Environmental Management 90(11): 3231-3244.
Jung, J., J. Yu, Y. Lyu, M. Lee, T. Hwang and S. Lee (2017). Ground-based characterization of aerosol spectral optical properties of haze and Asian dust episodes under Asian continental outflow during winter 2014. Atmos. Chem. Phys. 17(8): 5297-5309.
Lan, Z., B. Zhang, X. Huang, Q. Zhu, J. Yuan, L. Zeng, M. Hu and L. He (2018). Source apportionment of PM2.5 light extinction in an urban atmosphere in China. Journal of Environmental Sciences 63: 277-284.
Latimer, R. N. C. and R. V. Martin (2019). Interpretation of measured aerosol mass scattering efficiency over North America using a chemical transport model. Atmos. Chem. Phys. 19(4): 2635-2653.
Liu, N. W., Y. J. Ma, J. Z. Ma, Y. F. Wang, S. Y. Yang and L. G. Li (2015). Atmospheric extinction properties in Shenyang, China. Particuology 18: 120-126.
Liu, X., Y. Zhang, J. Jung, J. Gu, Y. Li, S. Guo, S.-Y. Chang, D. Yue, P. Lin, Y. J. Kim, M. Hu, L. Zeng and T. Zhu (2009). Research on the hygroscopic properties of aerosols by measurement and modeling during CAREBeijing-2006. Journal of Geophysical Research: Atmospheres 114(D2).
Lowenthal, D. H. and N. Kumar (2016). Evaluation of the IMPROVE Equation for estimating aerosol light extinction. Journal of the Air & Waste Management Association 66(7): 726-737.
Lyamani, H., F. Olmo and L. Aladosarboledas (2008). Light scattering and absorption properties of aerosol particles in the urban environment of Granada, Spain. Atmospheric Environment 42(11): 2630-2642.
Malm, W., S. Cismoski, A. Prenni and M. Peters (2018). Use of cameras for monitoring visibility impairment. Atmospheric Environment 175: 167-183.
Malm, W. C. and J. L. Hand (2007). An examination of the physical and optical properties of aerosols collected in the IMPROVE program. Atmospheric Environment 41(16): 3407-3427.
Nakayama, T., R. Hagino, Y. Matsumi, Y. Sakamoto, M. Kawasaki, A. Yamazaki, A. Uchiyama, R. Kudo, N. Moteki, Y. Kondo and K. Tonokura (2010). Measurements of aerosol optical properties in central Tokyo during summertime using cavity ring-down spectroscopy: Comparison with conventional techniques. Atmospheric Environment 44(25): 3034-3042.
Park, E. S. and I. N. Sener (2019). Traffic-related air emissions in Houston: Effects of light-rail transit. Science of The Total Environment 651: 154-161.
Pettersson, A., E. R. Lovejoy, C. A. Brock, S. S. Brown and A. R. Ravishankara (2004). Measurement of aerosol optical extinction at 532nm with pulsed cavity ring down spectroscopy. Journal of Aerosol Science 35(8): 995-1011.
Pitchford, M., W. Malm, B. Schichtel, N. Kumar, D. Lowenthal and J. Hand (2007). Revised Algorithm for Estimating Light Extinction from IMPROVE Particle Speciation Data. Journal of the Air & Waste Management Association 57(11): 1326-1336.
Prenni, A. J., J. L. Hand, W. C. Malm, S. Copeland, G. Luo, F. Yu, N. Taylor, L. M. Russell and B. A. Schichtel (2019). An examination of the algorithm for estimating light extinction from IMPROVE particle speciation data. Atmospheric Environment 214: 116880.
Requia, W. J., C. D. Higgins, M. D. Adams, M. Mohamed and P. Koutrakis (2018). The health impacts of weekday traffic: A health risk assessment of PM2.5 emissions during congested periods. Environment International 111: 164-176.
Sabetghadam, S. and F. Ahmadi-Givi (2014). Relationship of extinction coefficient, air pollution, and meteorological parameters in an urban area during 2007 to 2009. Environ Sci Pollut Res Int 21(1): 538-547.
Schichtel, B. A., R. B. Husar, S. R. Falke and W. E. Wilson (2001). Haze trends over the United States, 1980–1995. Atmospheric Environment 35(30): 5205-5210.
Shen, X. J., J. Y. Sun, X. Y. Zhang, Y. M. Zhang, L. Zhang, H. C. Che, Q. L. Ma, X. M. Yu, Y. Yue and Y. W. Zhang (2015). Characterization of submicron aerosols and effect on visibility during a severe haze-fog episode in Yangtze River Delta, China. Atmospheric Environment 120: 307-316.
Singh, A., W. J. Bloss and F. D. Pope (2017). 60 years of UK visibility measurements: impact of meteorology and atmospheric pollutants on visibility. Atmospheric Chemistry and Physics 17(3): 2085-2101.
Soni, K., S. Singh, T. Bano, R. S. Tanwar, S. Nath and B. C. Arya (2010). Variations in single scattering albedo and Angstrom absorption exponent during different seasons at Delhi, India. Atmospheric Environment 44(35): 4355-4363.
Tan, R. T. (2008). Visibility in bad weather from a single image. 2008 IEEE Conference on Computer Vision and Pattern Recognition, IEEE.
Tao, J., L. Zhang, J. Cao, S.-C. Hsu, X. Xia, Z. Zhang, Z. Lin, T. Cheng and R. Zhang (2014). Characterization and source apportionment of aerosol light extinction in Chengdu, southwest China. Atmospheric Environment 95: 552-562.
Tao, J., L. Zhang, K. Ho, R. Zhang, Z. Lin, Z. Zhang, M. Lin, J. Cao, S. Liu and G. Wang (2014). Impact of PM2. 5 chemical compositions on aerosol light scattering in Guangzhou—the largest megacity in South China. Atmospheric Research 135: 48-58.
Tao, J., Z. Zhang, Y. Wu, L. Zhang, Z. Wu, P. Cheng, M. Li, L. Chen, R. Zhang and J. Cao (2019). Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China. Atmos. Chem. Phys. 19(13): 8471-8490.
Tsekeri, A., V. Amiridis, F. Marenco, A. Nenes, E. Marinou, S. Solomos, P. Rosenberg, J. Trembath, G. J. Nott, J. Allan, M. Le Breton, A. Bacak, H. Coe, C. Percival and N. Mihalopoulos (2017). Profiling aerosol optical, microphysical and hygroscopic properties in ambient conditions by combining in situ and remote sensing. Atmos. Meas. Tech. 10(1): 83-107.
Wang, J., A. Virkkula, Y. Gao, S. Lee, Y. Shen, X. Chi, W. Nie, Q. Liu, Z. Xu, X. Huang, T. Wang, L. Cui and A. Ding (2017). Observations of aerosol optical properties at a coastal site in Hong Kong, South China. Atmospheric Chemistry and Physics 17(4): 2653-2671.
Wang, Q., Y. Sun, Q. Jiang, W. Du, C. Sun, P. Fu and Z. Wang (2015). Chemical composition of aerosol particles and light extinction apportionment before and during the heating season in Beijing, China. Journal of Geophysical Research: Atmospheres 120(24): 12708-12722.
Watson, J. (2002). Visibility: Science and Regulation. Journal of the Air & Waste Management Association 52: 628-713.
WMO (2017). Manual on the Global Observing System, Volume I – Global Aspects : Annex V to the WMO Technical Regulations. World Meteorological Organization WMO-No. 544.
Womack, C. C., E. E. McDuffie, P. M. Edwards, R. Bares, J. A. de Gouw, K. S. Docherty, W. P. Dubé, D. L. Fibiger, A. Franchin, J. B. Gilman, L. Goldberger, B. H. Lee, J. C. Lin, R. Long, A. M. Middlebrook, D. B. Millet, A. Moravek, J. G. Murphy, P. K. Quinn, T. P. Riedel, J. M. Roberts, J. A. Thornton, L. C. Valin, P. R. Veres, A. R. Whitehill, R. J. Wild, C. Warneke, B. Yuan, M. Baasandorj and S. S. Brown (2019). An Odd Oxygen Framework for Wintertime Ammonium Nitrate Aerosol Pollution in Urban Areas: NOx and VOC Control as Mitigation Strategies. Geophysical Research Letters 46(9): 4971-4979.
Xu, J., J. Tao, R. Zhang, T. Cheng, C. Leng, J. Chen, G. Huang, X. Li and Z. Zhu (2012). Measurements of surface aerosol optical properties in winter of Shanghai. Atmospheric Research 109-110: 25-35.
Yang, M., S. Howell, J. Zhuang and B. Huebert (2009). Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China–interpretations of atmospheric measurements during EAST-AIRE. Atmospheric Chemistry and Physics 9(6): 2035-2050.
Zhang, Z., Y. Shen, Y. Li, B. Zhu and X. Yu (2017). Analysis of extinction properties as a function of relative humidity using a κ-EC-Mie model in Nanjing. Atmospheric Chemistry and Physics 17(6): 4147-4157.
Zhu, W., Z. Cheng, S. Lou, W. Hu, J. Zheng, L. Qiao and N. Yan (2019). Reconstructed algorithm for scattering coefficient of ambient submicron particles. Environmental Pollution 253: 439-448.
Zhuang, B., T. Wang, J. Liu, S. Li, M. Xie, Y. Han, P. Chen, Q. Hu, X. Q. Yang, C. Fu and J. Zhu (2017). The surface aerosol optical properties in the urban area of Nanjing, west Yangtze River Delta, China. Atmos. Chem. Phys. 17(2): 1143-1160.
Zhuang, B. L., T. J. Wang, J. Liu, S. Li, M. Xie, Y. Han, P. L. Chen, Q. D. Hu, X. Q. Yang, C. B. Fu and J. L. Zhu (2017). The surface aerosol optical properties in the urban area of Nanjing, west Yangtze River Delta, China. Atmospheric Chemistry and Physics 17(2): 1143-1160.