跳到主要內容

簡易檢索 / 詳目顯示

研究生: 游秋雯
Chiou-Wen You
論文名稱: 以多重耦合線實現多功能帶通濾波器
Multi-Functional Bandpass Filter Designs with Multicoupled Line
指導教授: 林祐生
Yo-shen Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 112
中文關鍵詞: 帶通濾波器多重耦合線
外文關鍵詞: bandpass filter, multicoupled line
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文藉由多重耦合線接地端及電容負載之變化,實現兩類多功能帶通濾波器,分別為「具單端至平衡轉換功能之帶通濾波器」及「具功率分配器功能之帶通濾波器」。電容負載除了使得耦合線電氣長度可小於二十分之一波長,讓電路小型化外,也能提升止帶頻寬。此外,由於電路架構可等效為濾波器原型電路,因此可使用植入損耗法簡化設計流程。
    在具單端至平衡轉換功能之帶通濾波器設計上,並提出增加階數及引入傳輸零點提昇濾波器選擇度的方法,電路以砷化鎵積體製程實現,中心頻率為5.5GHz,晶片面積可小於1.5×1mm2 (0.098λg×0.065λg)。通帶內平衡特性合於一般商用規格,並具有高選擇度及寬止帶,高頻側止帶抑制超過20dB可達12倍頻,而其損耗與一般積體式帶通濾波器植入損耗相當。此外,亦可應用於整合平衡至不平衡轉換器之單刀雙擲帶通濾波器,進一步整合射頻前端中多個功能方塊。
    在具功率分配器功能之帶通濾波器設計方面,藉由加入隔離電阻與導納轉換器,在通帶內可提供良好的隔離度與輸出反射損耗,並提出利用奇偶模分析的設計方法。電路以砷化鎵積體電路實現,中心頻率為5.5GHz,晶片面積僅為1.5×1.5mm2 (0.098λg×0.098λg),並具有高選擇度及寬止帶,高頻側止帶抑制超過30dB可達10倍頻。而其損耗與一般積體式帶通濾波器植入損耗相當。
    本論文提出的多功能帶通濾波器,具微小化電路面積、高選擇度、寬止帶與電路架構簡單等優勢,並提出完整設計流程與公式,將有助於縮小收發機製作面積、成本與設計時程。


    In this study, two kinds of multi-functional bandpass filter based on multicoupled line are proposed, which are the balun bandpass filter and the bandpass power divider. They are achieved by the proper placements of ground terminations and loaded capacitors of a multicoupled line. The effective length of the multicoupled line can be shorter than λ/20 by attaching loading capacitors, such that compact circuit size and wide stopband can be achieved. In addition, their circuit models can be equivalent to the bandpass filter prototype. Therefore, the proposed multi-functioal filters can be easily designed using the insertion loss method.
    The design of balun bandpass filters is first presented. The design methods for higher order filter response and for introducing transmission zero are proposed. Specifically, balun bandpass filters are implemented using the GaAs pHEMT process with a center frequency of 5.5GHz. The chip sizes are less than 1.5×1mm2 (0.098λg×0.065λg). The measurement results show that the in-band amplitude imbalance and phase difference at the balanced ports meet commercial application requirements. In addition, wide stopband and high selectivity are obtained. The upper stpoband rejection is better than 20dB up to 12f0. Moreover, the proposed balun filter can be further integrated with SPDT switch to achieve highly-integrated RF front-end design.
    The second part of the thesis is focused on the design of bandpass power divider. The proposed circuit structure provides good in-band matching and isolation by the introduction of additional isolation resistor and admittance inverters. It can be simply designed by the even-odd mode analysis. Specifically, a third-order integrated bandpass power divider with a center frequency of 5.5GHz is implemented in a chip size of only 1.5×1.5mm2 (0.098λg×0.098λg). In addition, wide stopband and high selectivity are obtained. The upper stpoband rejection is better than 30dB up to 10.3f0. Compared to related previous works, the insertion loss and size are similar to conventional integrated bandpass filters, but two functions are included in the proposed design.
    The proposed multi-functional bandpass filters have the advantages of compact size, high selectivity, and wide stopband with simple circuit topology. The complete design procedure and design equations are also proposed. It is believed that this will help reduce the size, cost and design steps of RF front-end.

    論文摘要................................................I Abstract.... ...........................................II 致謝 ..................................................IV 目錄 ...................................................V 圖目錄..................................................VII 表目錄 .................................................XI 第一章 緒論.............................................1 1.1 研究動機.............................................1 1.2 文獻回顧.............................................2 1.2 章節介紹.............................................5 第二章 具單端至平衡輸出轉換功能之帶通濾波器.............6 2.1 二階電路設計.........................................6 2.1.1 電路架構與理論.....................................6 2.1.2 實做與量測驗證.....................................11 2.2 三階電路設計( I )....................................18 2.2.1 電路架構與理論.....................................18 2.2.2 實做與量測驗證.....................................20 2.3 三階電路設計( II )...................................27 2.3.1 電路架構與理論.....................................27 2.3.2 實做與量測驗證.....................................31 2.4結論..................................................38 第三章 可控制傳輸零點之單端至平衡輸出轉換功能帶通濾波器.40 3.1電路架構與理論........................................40 3.2實做與量測驗證........................................44 3.2.1 高頻側零點設計.....................................44 3.2.2 低頻側零點設計.....................................52 3.3 結論與文獻比較.......................................59 第四章 具功率分配器功能之帶通濾波器.....................64 4.1電路架構與理論........................................64 4.1.1 基本架構...........................................64 4.1.2 改良架構...........................................69 4.2 實做與量測驗證.......................................74 4.3 結論.................................................82 第五章 結論..............................................83 參考文獻.................................................85 Publication List.........................................89 附錄一...................................................90 附錄二...................................................97

    [1]“TDK/product catalog/RF components/multilayer bandpass filters (balance output type),” TDK Corporation, Tokyo, Japan, 2008. [Online]. Available: http://www.tdk.com/, Device Part No. DEA202450BT-7077A1
    [2]“Soshin/filters/multilayered dielectric balanced filters,” Soshin Electric Company Ltd., Tokyo, Japan, 2008. [Online]. Available: http://www.soshin-ele.com/pro duct/index.html, Device Part No. DBF80F802
    [3]D. E. Bockelman, and W. R. Eisenstadt, “Combined Differential and Common-Mode Analysis of Power Splitters and Combiners,” IEEE Trans. Microw. Theory Tech., vol. 43, pp. 2627–2632, Nov. 1995.
    [4]W. R. Eisenstadt, B. Stengel, and B. M. Thompson, Microwave Differential Circuit Design Using Mixed-Mode S- Parameters. Boston, MA: Artech House, 2006.
    [5]K. Nishikawa, I. Toyoda, and T. Tokumitsu, “Compact and Broad-Band Three-Dimensional MMIC Balun,” IEEE Trans. Microw. Theory Tech., vol. 47, pp. 96–98, Jan. 1999.
    [6]Q. Sun, J. Yuan, V. T. Vo, and A. A. Rezazadeh, “Design and Realization of Spiral Marchand Balun Using CPW Multilayer GaAs Technology,” in Proc. 36th Eur. Microw. Conf., Sept. 2006, pp. 68-71.
    [7]A. M. Pavio, and R. M. Halladay, “A Distributed Double-Balanced Dual-Gate FET Mixer,” in IEEE GaAs IC Symp. Dig., 1988, pp. 177.
    [8]S. J. Parisi, “180° Lumped-Element Hybrid,” in IEEE MTT-S Int Microw. Symp. Dig., 1989, pp. 1243–1246.
    [9]C. W. Tang, and C. Y. Chang, “A Semi-Lumped Balun Fabricated by Low Temperature Co-Fired Ceramic,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2002, pp. 2201–2204.
    [10]K. W. Hamed, A. P. Freundorfer, and Y. M. M. Antar, “A Novel 15 to 45 GHz Monolithic Passive Balun for MMICs Applications,” in IEEE MTT-S Int Microw. Symp. Dig., 2003.
    [11]Lai Chee-Hong Ivan, Inui Chiaki, and Fujishima Minoru, “CMOS On-Chip Stacked Marchand Balun for Millimeter-wave Application,” IEICE Electronics Express, vol. 4, no. 2, pp. 48-53, 2007.
    [12]J. X. Liu, C. Y. Hsu, H. R. Chung, and C. Y. Chen, “A 60-GHz Millimeter-wave CMOS Marchand Balun,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 445-448, June 2007.
    [13]M. C. Park, B. H. Lee, and D. S. Park, “A Laminated Balance Filter Using LTCC Technology,” in Proc. Asia–Pacific Microw. Conf., Dec. 2005, pp.2974–2977.
    [14]L. K. Yeung, and K. L. Wu, “An LTCC Balanced-to-Unbalanced Extracted-Pole Bandpass Filter With Complex Load,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1512–1518, Apr. 2006.
    [15]C. C. Chuang, and C. L. Wang, “Design of Three-pole Single-to-Balanced Bandpass Filters,” in Proc. 36th Eur. Microw. Conf., Sept. 2006, pp.1193–1196.
    [16]K. T. Chen, and S. J. Chung, “A Novel Compact Balanced-to-Unbalanced Low-Temperature Co-Fired Ceramic Bandpass Filter With Three Coupled Lines Configuration,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 7, pp. 1714–1720, Jul. 2008.
    [17]E. Y. Jung, and H. Y. Hwang, “A Balun-BPF Using a Dual Mode Ring Resonator,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 9, pp.652–654, Sep. 2007.
    [18]R. Kravchenko, K. Markov, D. Orlenko, G. Sevskiy, and P. Heide, “Implementation of a Miniaturized Lumped-Distributed Balun in Balanced Filtering for Wireless Applications,” in Proc. 35th Eur. Microw. Conf., Oct. 2005, pp. 1303–1306.
    [19]C. H. Wu, C. H. Wang, S. Y. Chen, and C. H. Chen, “Balanced-to-Unbalanced Bandpass Filters and the Antenna Application,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2474–2482, Nov. 2008.
    [20]K. S. Ang, Y. C. Leong, and C. H. Lee, “Analysis and Design of Miniaturized. Lumped-Distributed Impedance-Transforming Baluns,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 3, pp. 1009–1017, Mar. 2003.
    [21]H. M. Lee, and C. M. Tsai, “Exact Synthesis of Broadband Three-Line Baluns,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp. 140-148, Jan. 2009.
    [22]C. L. Tsai, and Y. S. Lin, “Analysis and Design of New Single-to-Balanced Multicoupled Line Bandpass Filters Using Low-Temperature Co-Fired Ceramic Technology,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 2902–2912, Dec. 2008.
    [23]R. Sato, and E. G. Cristal, “Simplified Analysis of Coupled Transmission-Line Networks,” IEEE Trans. Microw. Theory Tech., vol. MTT-18, no. 3, pp. 122–131, Mar. 1970.
    [24]E. J. Wilkinson, “An N-way Hybrid Power Dividers,” IEEE Trans. Microw. Theory Tech., vol.MTT-8, pp. 116–118, 1960.
    [25]K. Nishikawa, T. Tokumitsu, and I. Toyoda, “Miniaturized Wilkinson Power Divider Using Three-Dimensional MMIC Technology,” IEEE Microwave and Guided Wave Letter., vol. 6, no. 10, pp.372-374, Oct. 1996.
    [26]L. H. Lu, P. Bhattacharya, L. P. B. Katehi, and G. E. Ponchak, “X-band and K-band lumped Wilkinson Power Dividers with a Micromachined Technology,” in IEEE MTT-S Int Microw. Symp. Dig., 2000, pp. 287-290.
    [27]M. C. Scardelletti, G. E. Ponchak, and T. M. Weller, “Miniaturized Wilkinson Power Divider Utilizing Capacitive Loading,” IEEE Microw. Wireless Compon. Lett., vol. 12, no. 1, pp. 6-8, Jan. 2002.
    [28]B. Piernas, and M. Hirata, “Enhanced Miniaturized Wilkinson Power Divider,” in IEEE MTT-S Int Microw. Symp. Dig., 2003, pp. 1255-1258.
    [29]I. H. Kang, and J. S. Park, “A Reduced-size Power Divider Using the Coupled Line Equivalent to a Lumped Inductor”, Microwave Journal, 46, 7, ABI/INFORM Trade & Industry, pp. 72, Jul. 2003.
    [30]L. H. Lu, Y. T. Liao, and C. R. Wu, “A Miniaturized Wilkinson Power Divider with CMOS Active Inductors,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 775–777, Nov. 2005.
    [31]W. H. Tu, “Compact Wilkinson Power Divider with Harmonic Suppression,” Microwave Optical Tech. Lett., vol. 49, no. 11, pp. 2825-2827, Dec. 2007.
    [32]K. H. Yi, and B.K. Kang, “Modified Wilkinson Power Divider for nth Harmonic Suppression,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 5, pp. 178-180, May 2003.
    [33]P. K. Singh, S. Basu, and Y.-H. Wang, “Coupled Line Power Divider with Compact Size and Bandpass Response,” Electronics Letters, vol. 45, no. 17, Aug. 2009.
    [34]J. S. Hong, and M. J. Lancaster, Microstrip Filters for RF/Microwave Application. New York: Wiley, 2001.
    [35]Eric Bogatin, Signal integrity-Simplified, Prentice Hall, 2004.
    [36]王品傑,以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統,碩士論文,國立中央大學電機工程研究所,民國九十九年。
    [37]C. W. Tang, and S. F. You, “Design Methodologies of LTCC Bandpass Filters, Diplexer, and Triplexer with Transmission Zeros,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 717-723, Dec. 2006.
    [38]I. H. Kang, S. W. Shan, X. G. Wang, Y. Yun, J. H. Kim, and C. S. Park,“A Miniaturized GaAs MMIC Bandpass Filter for the 5 GHz Band,”Microwave Journal, vol. 50, no. 11, pp. 88-94, Nov. 2007.
    [39]C. L. Yang, H. C. Chiu, and Y. C. Chiang, “Design of a Ka-Band Bandpass Filter with Asymmetrical Compact Resonator”, in IEEE MTT-S Int Microw. Symp. Dig., Boston, Massachusetts, U.S.A., June 2009.
    [40]C. Y. Hsu, C. Y. Chen, and H. R. Chuang, “A 60- GHz Millimeter-Wave Bandpass Filter Using 0.18-um CMOS Technology,” IEEE Electron Device Letters. vol. 29, no. 3, pp. 246-248, Mar. 2008.
    [41]S. Lin, L. Yang, and X. Sun, “A Compacted CMOS K-band Bandpass Filter Using Meandering Thin Film Microstrip and UC-PBG Structures,” Microwave and Optical Technology Letters. vol. 51, no. 3, Mar. 2009.
    [42]D. M. Pozar, Microwave Engineering., 3rd edition, John Wiley & Sons, Inc., 2005.
    [43]張盛富、戴明鳳,無線通信之射頻被動電路設計,全華科技圖書股份有限公司,民國八十七年。

    QR CODE
    :::