| 研究生: |
盧聖元 Sheng-Yuan Lu |
|---|---|
| 論文名稱: |
高熵氧化物(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O)應用於鋰離子電池負極材料之研究 Study on high entropy oxides (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O) as anode electrode for lithium-ion battery |
| 指導教授: |
洪緯璿
Wei-Hsuan Hung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 高熵氧化物 、溶膠凝膠法 、鋰離子電池 、負極材料 |
| 外文關鍵詞: | high entropy oxide, sol-gel method, lithium-ion batteries, anode material |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗將使用溶膠凝膠法(Sol-gel Process)進行高熵氧化物 (Co0.2Cu0.2Mg0.2Ni0.2Zn0. 2O)粉體之製備,並進一步作為鋰離子電池之負極材料進行研究。此製程技術常使用於合成陶瓷粉末,該技術具有粒徑均勻等優點,能有利於電極材料之應用。本研究將利用溶膠凝膠法製備之高熵氧化物(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O)進行鋰離子電池負極材料之應用,並探討高熵氧化物的電化學性能表現與各金屬陽離子與材料之關聯性,透過簡單地改變元素組成來進行電化學性質之測試。
在鋰離子電池實作成果方面,本研究開發之高熵氧化物負極材料,經鋰離子半電池之測試,在50mAh g-1之電流下,其電容值將可達到600 mAh g-1。此外,透過改變高熵氧化物之組成陽離子可進一步證實熵穩定作用對於電池容量而言能帶來顯著之好處,並大幅提高了循環穩定性。另外也進一步結合LNMO之高電壓正極進行全電池之測試,證明高熵氧化物未來將具備替代現今鋰離子電池電極材料之潛力。
In this study, sol-gel method will be used to prepare high entropy oxide (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O) powder, and will be further studied as an anode material for lithium-ion batteries. Sol-gel method is often used to synthesize powders. This fabrication process not only has the advantages of uniform particle size, but also suitable for the application of electrode materials. This study uses the high entropy oxide (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O) powder prepared by the sol-gel method for the application of lithium ion battery anode materials, and discuss the electrochemical performance of high entropy oxides and the correlation between metal cations and materials, and test the electrochemical properties by simply changing the composition of the elements.
In terms of the results of the performance of lithium-ion batteries, the high entropy oxide anode material developed in this research has been tested by a lithium-ion half-cell, and its capacity reaches 600 mAh g-1 at a current of 50 mAh g-1. In addition, by changing the cation composition of the high entropy oxide, it can be further confirmed that entropy stability brings significant benefits to battery capacity and greatly improves cycle stability. In addition, high-voltage cathode (LMNO) was further used to test the battery system, which proved that the high entropy oxide will have the potential to replace current lithium-ion battery electrode materials in the future.
1. Mizushima, K., et al., A new cathode material for batteries of high energy density. Mater. Res. Bull, 1980. 15(6): p. 783.
2. Nitta, N., et al., Li-ion battery materials: present and future. Materials today, 2015. 18(5): p. 252-264.
3. Reddy, M.A., et al., CFx derived carbon–FeF2 nanocomposites for reversible lithium storage. Advanced energy materials, 2013. 3(3): p. 308-313.
4. Breitung, B., et al., In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries. Nanoscale, 2016. 8(29): p. 14048-14056.
5. Rost, C.M., et al., Entropy-stabilized oxides. Nature communications, 2015. 6(1): p. 1-8.
6. Moździerz, M., et al., Mixed ionic-electronic transport in the high-entropy (Co, Cu, Mg, Ni, Zn) 1-xLixO oxides. Acta Materialia, 2021. 208: p. 116735.
7. Albedwawi, S.H., et al., High entropy oxides-exploring a paradigm of promising catalysts: A review. Materials & Design, 2021: p. 109534.
8. Bérardan, D., et al., Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 2016. 4(24): p. 9536-9541.
9. Hightech. 電池的原理與分類. 2021/5/22; Available from: https://www.stockfeel.com.tw/%E9%9B%BB%E6%B1%A0-%E6%A7%8B%E9%80%A0-%E5%8E%9F%E7%90%86-%E5%88%86%E9%A1%9E/.
10. 方程毅. 【材料科技】鋰電池樹枝狀結晶的難題. 2016/5/31; Available from: https://case.ntu.edu.tw/blog/?p=24589.
11. 平順建築材料. 鋰離子電池鋰枝晶生長:影響因素和抑制方法. 2020/10/12; Available from: https://read01.com/zh-tw/NNA4L4Q.html#.YVRAcppBxhF.
12. Xiaoting. 鋰電池鋰枝晶形成原因. 2019/11/07; Available from: http://news.chinatungsten.com/big5/tungsten-information/124927-ti-17785.
13. 何冠廷、陳弘源、陳燦耀、方冠榮、張家欽. 儲能發展的勁旅─鋰離子電池. 2019/5; Available from: https://ejournal.stpi.narl.org.tw/sd/download?source=10805-10.pdf&vlId=744d20a3f16042e8abd0435006dac0cf&nd=1&ds=1.
14. 黃國雄, 等莫耳比多元合金系統之研究. 1996, 國立清華大學材料科學與工程研究所碩士論文.
15. Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
16. Ma, Y., et al., High-entropy energy materials: challenges and new opportunities. Energy & Environmental Science, 2021.
17. Yeh, J.W., et al. High-entropy alloys–a new era of exploitation. in Materials Science Forum. 2007. Trans Tech Publ.
18. Tsai, M.-H. and J.-W. Yeh, High-entropy alloys: a critical review. Materials Research Letters, 2014. 2(3): p. 107-123.
19. Gao, M.C., et al., High-entropy alloys. Cham: Springer International Publishing, 2016.
20. Murty, B.S., et al., High-entropy alloys. 2019: Elsevier.
21. Miracle, D.B. and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Materialia, 2017. 122: p. 448-511.
22. Yao, Y., et al., Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 2018. 359(6383): p. 1489-1494.
23. Sarkar, A., et al., High‐entropy oxides: fundamental aspects and electrochemical properties. Advanced Materials, 2019. 31(26): p. 1806236.
24. Sarkar, A., et al., Nanocrystalline multicomponent entropy stabilised transition metal oxides. Journal of the European Ceramic Society, 2017. 37(2): p. 747-754.
25. Sarkar, A., et al., Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency. Dalton transactions, 2017. 46(36): p. 12167-12176.
26. Sarkar, A., et al., Rare earth and transition metal based entropy stabilised perovskite type oxides. Journal of the European Ceramic Society, 2018. 38(5): p. 2318-2327.
27. Sarkar, A., et al., High entropy oxides for reversible energy storage. Nature communications, 2018. 9(1): p. 1-9.
28. Messing, G.L., S.C. Zhang, and G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis. Journal of the American Ceramic Society, 1993. 76(11): p. 2707-2726.
29. Pluym, T., et al., Solid silver particle production by spray pyrolysis. Journal of aerosol science, 1993. 24(3): p. 383-392.
30. Pluym, T.C., et al., Silver-palladium alloy particle production by spray pyrolysis. Journal of materials research, 1995. 10(7): p. 1661-1673.
31. Patil, P.S., Versatility of chemical spray pyrolysis technique. Materials Chemistry and physics, 1999. 59(3): p. 185-198.
32. Cerpotech. Spray pyrolysis of ceramic powders for energy, environmental and electronic applications. Available from: https://matmatch.com/suppliers/cerp-cerpotech/examples/spray-pyrolysis-powders.
33. Shirsath, S.E., et al., Ferrites obtained by sol-gel method, in Handbook of sol-gel science and technology. 2018, Springer Cham. p. 695-735.
34. Innocenzi, P., Understanding sol–gel transition through a picture. A short tutorial. Journal of Sol-Gel Science and Technology, 2020. 94(3): p. 544-550.
35. Sushil, J., et al., High entropy phase evolution and fine structure of five component oxide (Mg, Co, Ni, Cu, Zn) O by citrate gel method. Materials Chemistry and Physics, 2021. 259: p. 124014.
36. Saghir, A.V., et al., One-step synthesis of single-phase (Co, Mg, Ni, Cu, Zn) O High entropy oxide nanoparticles through SCS procedure: Thermodynamics and experimental evaluation. Journal of the European Ceramic Society, 2021. 41(1): p. 563-579.
37. Niu, B., et al., Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys. Scientific reports, 2017. 7(1): p. 1-7.
38. Mao, A., et al., Solution combustion synthesis and magnetic property of rock-salt (Co0. 2Cu0. 2Mg0. 2Ni0. 2Zn0. 2) O high-entropy oxide nanocrystalline powder. Journal of Magnetism and Magnetic Materials, 2019. 484: p. 245-252.
39. Brinker, C.J. and G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. 2013: Academic press.
40. 國立中央大學研究發展處. 貴重儀器中心:儀器服務. Available from: https://ncu.edu.tw/rd/tw/page/index.php?num=58&root=9.
41. Poizot, P., et al., Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000. 407(6803): p. 496-499.
42. Helen, M., et al., Single step transformation of sulphur to Li 2 S 2/Li 2 S in Li-S batteries. Scientific reports, 2015. 5(1): p. 1-12.
43. Ding, C., et al., A bubble-template approach for assembling Ni–Co oxide hollow microspheres with an enhanced electrochemical performance as an anode for lithium ion batteries. Physical Chemistry Chemical Physics, 2016. 18(37): p. 25879-25886.
44. Wang, Y. F., and Zhang, L. J., Simple synthesis of CoO-NiO-C anode materials for lithium-ion batteries and investigation on its electrochemical performance. J. Power Sources, 2012. 209: p. 20-29.
45. Mueller, F., et al., Iron-doped ZnO for lithium-ion anodes: impact of the dopant ratio and carbon coating content. J. Electrochem. Soc., 2017. 164: p. A6123-A6130.