跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許瀚文
Han-wen Hsu
論文名稱: 以噴塗技術沉積有機半導體薄膜:形貌分析及其於有機場效應電晶體元件應用
Spray Coating Organic Semiconducting Thin Film: Morphology Analysis and Organic Field Effect Transistors Application
指導教授: 劉振良
Cheng-liang Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 116
中文關鍵詞: 噴塗有機場效應電晶體有機薄膜電晶體共軛高分子半導體有機小分子半導體溶液法製程
外文關鍵詞: spray coating, organic field effect transistors, organic thin film transistors, conjugated polymers, small molecular semiconductors, solution process
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用噴塗(spray-coating)技術沉積 poly[(9,9-dioctylfluorenyl-2,7 -diyl)-co-bithiophene] (F8T2)共軛高分子、6,13-bis(triisopropylsilylethynyl) -pentacene (TIPS-PEN)有機小分子以及poly-(selenophene-alt-3,6-dithophene -2-yl-2,5-bis-(2-hexyldecyl)-2,5-dihydro-pyrrolo[3,4-c]pyrrole-1,4-dione) (PSeDPP)共軛高分子作為有機半導體材料,製作於以矽烷(silane)處理過之SiO2/Si基板上,再以蒸鍍金作為電極,建構為底閘極頂接觸(bottom-gate top-contact)之有機場效應電晶體元件(organic field effect transistors; OFETs)。根據改變不同的噴塗參數(如噴塗壓力、流量、噴塗距離及噴塗時間等)及以不同親水性之矽烷處理或製作圖案化矽烷於基材上,用以探討其對半導體薄膜表面形態和電氣特性影響。經由選用最佳化參數所製作之元件,P型半導體F8T2與TIPS-PEN分別可達電洞遷移率(hole mobility)為0.02 cm2 V-1 s-1和1.18 cm2 V-1 s-1;雙極性半導體PSeDPP可同時達5 cm2 V-1 s-1及1.13 cm2 V-1 s-1之電洞遷移率和電子遷移率(electron mobility),並皆有超過102之電流開關比(Ion/Ioff)。最後使用噴塗法試產大面積圖案化元件陣列,在8 × 8共64個元件中有超過93%的元件可正常工作,替快速製作大面積微米級圖案化元件陣列提供了一種新的製程方法。


    Spray-coated organic semiconductors such as conjugated polymer of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene] (F8T2), small molecular of 6,13-bis(triisopropyl-silylethynyl)-pentacene (TIPS-PEN) and conjugated polymer of (selenophene-alt-3,6-dithophene-2-yl-2,5-bis-(2-hexyldecyl)-2,5 -dihydro-pyrrolo[3,4-c]pyrrole-1,4-dione) (PSeDPP) were constructed as organic field effect transistors (OFETs) on SiO2/Si substrate treated with various silanes or patterned silanes. The spray parameters and silanes selected were examined and corresponding morphologies of each organic semiconductors thin-film were systematically investigated while the OFETs were fabricated and characterized. After optimizing the condition used, F8T2 and TIPS-PEN could achieve hole mobility of 0.02 cm2 V-1 s-1 and 1.18 cm2 V-1 s-1 while PSeDPP could achieve hole and electron mobility of 5 cm2 V-1 s-1 and 1.13 cm2 V-1 s-1 simultaneously with on off current ratio of more than 102. Patterned OFETs array composed of 8 × 8 device layout on 4-inch Si wafer was also demonstrated with spray-coating approach and the percentage of devices worked successfully is exceeding 93%. As the result, the spray-coating process provides a new technique for fast manufacturing OFETs array in large-scale and compatible with the roll-to-roll process.

    摘要 i Abstract ii 目錄 iii 圖目錄 vii 表目錄 xv 第一章 緒論 1 1-1 前言 1 1-2 有機場效應電晶體 2 1-2-1 電晶體結構 3 1-2-2 電晶體特性 4 1-3 有機半導體材料 7 1-3-1 非可溶性小分子 8 1-3-2 可溶性小分子半導體 11 1-3-3 可溶性共軛高分子半導體 13 1-4 單分子自組裝層 16 1-4-1 介電層表面改質 17 1-4-2 電極表面改質 23 1-5 有機薄膜製程 26 1-5-1 熱蒸鍍製程 26 1-5-2 溶液法製程 (Solution Process) 28 1-5-2-1 液滴塗佈法 29 1-5-2-2 旋轉塗佈法 31 1-5-2-3 剪力塗佈法 32 1-5-2-4 噴墨列印法 35 1-5-2-5 噴霧塗佈法 36 1-6 元件圖案化製程 38 1-6-1 遮罩法 39 1-6-2 表面能控制法 42 1-7 研究動機 45 第二章 實驗方法 46 2-1 實驗藥品 46 2-1-1 有機高分子半導體 46 2-1-2 有機小分子半導體 46 2-1-3 不同官能基之矽烷 46 2-1-4 溶劑 47 2-2 實驗儀器及設備 47 2-3 基材前處理 49 2-3-1 晶圓清洗 49 2-3-2 單分子自組裝層製備 49 2-3-3 圖案化單分子自組裝層製備 50 2-4 有機半導體薄膜製備 53 2-4-1 噴塗有機小分子(TIPS-PEN)半導體薄膜 55 2-4-2 噴塗共軛高分子(F8T2)半導體薄膜 55 2-4-3 噴塗共軛高分子(PSeDPP)半導體薄膜 56 2-4-4 噴塗大面積圖案化之有機半導體薄膜 56 2-5 元件製備 57 2-6 元件電性量測 58 2-7 薄膜分析 58 2-7-1 光學顯微影像觀察 58 2-7-2 原子力顯微鏡分析 58 2-7-3 X光散射儀分析 59 第三章 結果與討論 60 3-1 自組裝單分子層 60 3-2 有機小分子(TIPS-PEN)場效應電晶體元件 62 3-2-1 噴塗條件控制 63 3-2-2 未圖案化TIPS-PEN電晶體元件 66 3-2-3 圖案化TIPS-PEN電晶體元件 67 3-2-4 X光散射分析 72 3-3 共軛高分子(F8T2)場效應電晶體元件 73 3-3-1 未圖案化F8T2電晶體元件分析 74 3-3-1-1 光學顯微影像 74 3-3-1-2 原子力顯微影像分析 76 3-3-1-3 電性分析 77 3-3-2 圖案化F8T2電晶體元件分析 81 3-4 共軛高分子(PSeDPP)場效應電晶體元件分析 83 3-4-1 未圖案化PSeDPP電晶體元件分析 84 3-4-2 圖案化PSeDPP電晶體元件分析 85 3-4-3 大面積圖案化PSeDPP元件陣列 87 第四章 結論及未來展望 89 第五章 參考文獻 91

    [1] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, J. Chem. Soc., Chem. Commun. 1977, 578.
    [2] B. W. D'Andrade, S. R. Forrest, Adv. Mater. 2004, 16, 1585.
    [3] H. Zhong, J. Smith, S. Rossbauer, A. J. White, T. D. Anthopoulos, M. Heeney, Adv. Mater. 2012, 24, 3205.
    [4] B. D. Naab, S. Himmelberger, Y. Diao, K. Vandewal, P. Wei, B. Lussem, A. Salleo, Z. Bao, Adv. Mater. 2013, 25, 4663.
    [5] Y. Mei, M. A. Loth, M. Payne, W. Zhang, J. Smith, C. S. Day, S. R. Parkin, M. Heeney, I. McCulloch, T. D. Anthopoulos, J. E. Anthony, O. D. Jurchescu, Adv. Mater. 2013, 25, 4352.
    [6] W. H. Lee, H. Min, N. Park, J. Lee, E. Seo, B. Kang, K. Cho, H. S. Lee, ACS Appl. Mater. Interfaces 2013, 5, 7838.
    [7] S. Lai, M. Demelas, G. Casula, P. Cosseddu, M. Barbaro, A. Bonfiglio, Adv. Mater. 2013, 25, 103.
    [8] Y.-C. Chiu, T.-Y. Chen, C.-C. Chueh, H.-Y. Chang, K. Sugiyama, Y.-J. Sheng, A. Hirao, W.-C. Chen, J. Mater. Chem. C 2014, 2, 1436.
    [9] S.-T. Han, Y. Zhou, Q. D. Yang, L. Zhou, L.-B. Huang, Y. Yan, C.-S. Lee, V. A. Roy, ACS Nano 2014, 8, 1923.
    [10] L. Liang, T. Fukushima, K. Nakamura, S. Uemura, T. Kamata, N. Kobayashi, J. Mater. Chem. C 2014, 2, 879.
    [11] Y.-C. Huang, H.-C. Chia, C.-M. Chuang, C.-S. Tsao, C.-Y. Chen, W.-F. Su, Sol. Energy Mater. Sol. Cells 2013, 114, 24.
    [12] J. Krantz, T. Stubhan, M. Richter, S. Spallek, I. Litzov, G. J. Matt, E. Spiecker, C. J. Brabec, Adv. Funct. Mater. 2013, 23, 1711.
    [13] J. G. Tait, B. P. Rand, P. Heremans, Org. Electron. 2013, 14, 1002.
    [14] J. Smith, R. Hamilton, I. McCulloch, N. Stingelin-Stutzmann, M. Heeney, D. D. Bradley, T. D. Anthopoulos, J. Mater. Chem. 2010, 20, 2562.
    [15] Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang, K.-G. Neoh, Prog. Polym. Sci. 2008, 33, 917.
    [16] R. De Boer, T. Klapwijk, A. Morpurgo, Appl. Phys. Lett. 2003, 83, 4345.
    [17] D. Gundlach, J. Nichols, L. Zhou, T. Jackson, Appl. Phys. Lett. 2002, 80, 2925.
    [18] D. J. Gundlach, Y.-Y. Lin, T. N. Jackson, S. Nelson, D. Schlom, IEEE Electron Device Lett. 1997, 18, 87.
    [19] Y.-Y. Lin, D. Gundlach, S. Nelson, T. Jackson, IEEE Electron Device Lett. 1997, 18, 606.
    [20] C. D. Sheraw, T. N. Jackson, D. L. Eaton, J. E. Anthony, Adv. Mater. 2003, 15, 2009.
    [21] Y.-Y. Lin, D. J. Gundlach, S. F. Nelson, T. N. Jackson, IEEE Trans. Electron Devices 1997, 44, 1325.
    [22] G. J. Chae, S.-H. Jeong, J. H. Baek, B. Walker, C. K. Song, J. H. Seo, J. Mater. Chem. C 2013, 1, 4216.
    [23] J. Chen, C. K. Tee, M. Shtein, J. Anthony, D. C. Martin, J. Appl. Phys. 2008, 103, 114513.
    [24] Y. Diao, B. C. Tee, G. Giri, J. Xu, H. Kim do, H. A. Becerril, R. M. Stoltenberg, T. H. Lee, G. Xue, S. C. Mannsfeld, Z. Bao, Nat. Mater. 2013, 12, 665.
    [25] G. Giri, S. Park, M. Vosgueritchian, M. M. Shulaker, Z. Bao, Adv. Mater. 2014, 26, 487.
    [26] D. H. Kim, D. Y. Lee, H. S. Lee, W. H. Lee, Y. H. Kim, J. I. Han, K. Cho, Adv. Mater. 2007, 19, 678.
    [27] W. H. Lee, D. H. Kim, Y. Jang, J. H. Cho, M. Hwang, Y. D. Park, Y. H. Kim, J. I. Han, K. Cho, Appl. Phys. Lett. 2007, 90, 132106.
    [28] S. C. Mannsfeld, M. L. Tang, Z. Bao, Adv. Mater. 2011, 23, 127.
    [29] J.-P. Hong, A.-Y. Park, S. Lee, J. Kang, N. Shin, D. Y. Yoon, Appl. Phys. Lett. 2008, 92, 143311.
    [30] C. S. Kim, S. Lee, E. D. Gomez, J. E. Anthony, Y.-L. Loo, Appl. Phys. Lett. 2008, 93, 103302.
    [31] J.-F. Chang, B. Sun, D. W. Breiby, M. M. Nielsen, T. I. Sölling, M. Giles, I. McCulloch, H. Sirringhaus, Chem. Mater. 2004, 16, 4772.
    [32] P. A. Levermore, R. Jin, X. Wang, J. C. de Mello, D. D. Bradley, Adv. Funct. Mater. 2009, 19, 950.
    [33] K. Asadi, F. Gholamrezaie, E. C. Smits, P. W. Blom, B. de Boer, J. Mater. Chem. 2007, 17, 1947.
    [34] E. Lim, B.-J. Jung, J. Lee, H.-K. Shim, J.-I. Lee, Y. S. Yang, L.-M. Do, Macromolecules 2005, 38, 4531.
    [35] H. Li, C. Fan, M. Vosgueritchian, B. C. K. Tee, H. Chen, J. Mater. Chem. C 2014, 2, 3617.
    [36] H. Li, B. C. Tee, J. J. Cha, Y. Cui, J. W. Chung, S. Y. Lee, Z. Bao, J. Am. Chem. Soc. 2012, 134, 2760.
    [37] H. S. Lee, D. H. Kim, J. H. Cho, M. Hwang, Y. Jang, K. Cho, J. Am. Chem. Soc. 2008, 130, 10556.
    [38] H.-C. Tiao, Y.-J. Lee, Y.-S. Liu, S.-H. Lee, C.-H. Li, M.-Y. Kuo, Org. Electron. 2012, 13, 1004.
    [39] M. Shtein, J. Mapel, J. B. Benziger, S. R. Forrest, Appl. Phys. Lett. 2002, 81, 268.
    [40] Y. Ito, A. A. Virkar, S. Mannsfeld, J. H. Oh, M. Toney, J. Locklin, Z. Bao, J. Am. Chem. Soc. 2009, 131, 9396.
    [41] E. Meijer, D. De Leeuw, S. Setayesh, E. Van Veenendaal, B.-H. Huisman, P. Blom, J. Hummelen, U. Scherf, T. Klapwijk, Nat. Mater. 2003, 2, 678.
    [42] H. Sirringhaus, R. Wilson, R. Friend, M. Inbasekaran, W. Wu, E. Woo, M. Grell, D. Bradley, Appl. Phys. Lett. 2000, 77, 406.
    [43] R. JosepháKline, J. Mater. Chem. 2012, 22, 19047.
    [44] M. Kitamura, Y. Kuzumoto, W. Kang, S. Aomori, Y. Arakawa, Appl. Phys. Lett. 2010, 97, 033306.
    [45] J. W. Ward, M. A. Loth, R. J. Kline, M. Coll, C. Ocal, J. E. Anthony, O. D. Jurchescu, J. Mater. Chem. 2012, 22, 19047.
    [46] Y. Diao, L. Shaw, Z. Bao, S. C. B. Mannsfeld, Energy Environ. Sci. 2014, 7, 2145.
    [47] M.-H. Chung, J.-H. Kwon, T.-Y. Oh, S.-J. Lee, D.-H. Choi, B.-K. Ju, Thin Solid Films 2010, 518, 6289.
    [48] Z. He, K. Xiao, W. Durant, D. K. Hensley, J. E. Anthony, K. Hong, S. M. Kilbey, J. Chen, D. Li, Adv. Funct. Mater. 2011, 21, 3617.
    [49] D. H. Kim, J. T. Han, Y. D. Park, Y. Jang, J. H. Cho, M. Hwang, K. Cho, Adv. Mater. 2006, 18, 719.
    [50] J.-H. Kwon, S.-I. Shin, J. Choi, M.-H. Chung, T.-Y. Oh, K.-H. Kim, M. J. Cho, K. N. Kim, D. H. Choi, B.-K. Ju, Org. Electron. 2009, 10, 729.
    [51] J.-H. Kwon, S.-I. Shin, K.-H. Kim, M. J. Cho, K. N. Kim, D. H. Choi, B.-K. Ju, Appl. Phys. Lett. 2009, 94, 013506.
    [52] H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, Z. Bao, Adv. Funct. Mater. 2005, 15, 671.
    [53] J. Li, Y. Zhao, H. S. Tan, Y. Guo, C.-A. Di, G. Yu, Y. Liu, M. Lin, S. H. Lim, Y. Zhou, Sci. Rep. 2012, 2.
    [54] F. Zhang, C. a. Di, N. Berdunov, Y. Hu, Y. Hu, X. Gao, Q. Meng, H. Sirringhaus, D. Zhu, Adv. Mater. 2013, 25, 1401.
    [55] G. Giri, E. Verploegen, S. C. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, Z. Bao, Nature 2011, 480, 504.
    [56] S. Chung, S. O. Kim, S.-K. Kwon, C. Lee, Y. Hong, IEEE Electron Device Lett. 2011, 32, 1134.
    [57] D. T. James, B. C. Kjellander, W. T. Smaal, G. H. Gelinck, C. Combe, I. McCulloch, R. Wilson, J. H. Burroughes, D. D. Bradley, J.-S. Kim, ACS Nano 2011, 5, 9824.
    [58] N. A. Azarova, J. W. Owen, C. A. McLellan, M. A. Grimminger, E. K. Chapman, J. E. Anthony, O. D. Jurchescu, Org. Electron. 2010, 11, 1960.
    [59] J. W. Owen, N. A. Azarova, M. A. Loth, M. Paradinas, M. Coll, C. Ocal, J. E. Anthony, O. D. Jurchescu, J. Nanotechnol. 2011, 2011, 1.
    [60] M. Shao, S. Das, K. Xiao, J. Chen, J. K. Keum, I. N. Ivanov, G. Gu, W. Durant, D. Li, D. B. Geohegan, J. Mater. Chem. C 2013, 1, 4384.
    [61] X. Yu, N. Zhou, S. Han, H. Lin, D. B. Buchholz, J. Yu, R. P. H. Chang, T. J. Marks, A. Facchetti, J. Mater. Chem. C 2013, 1, 6532.
    [62] J. Chen, C. K. Tee, M. Shtein, D. C. Martin, J. Anthony, Org. Electron. 2009, 10, 696.
    [63] M. H. Choi, B. S. Kim, J. Jang, IEEE Electron Device Lett. 2012, 33, 1571.
    [64] R. Hamilton, J. Smith, S. Ogier, M. Heeney, J. E. Anthony, I. McCulloch, J. Veres, D. D. C. Bradley, T. D. Anthopoulos, Adv. Mater. 2009, 21, 1166.
    [65] D. K. Hwang, C. Fuentes-Hernandez, J. D. Berrigan, Y. Fang, J. Kim, W. J. Potscavage, H. Cheun, K. H. Sandhage, B. Kippelen, J. Mater. Chem. 2012, 22, 5531.
    [66] M. Singh, H. M. Haverinen, P. Dhagat, G. E. Jabbour, Adv. Mater. 2010, 22, 673.
    [67] J. A. Lim, W. H. Lee, H. S. Lee, J. H. Lee, Y. D. Park, K. Cho, Adv. Funct. Mater. 2008, 18, 229.
    [68] S. Y. Cho, J. M. Ko, J. Lim, J. Y. Lee, C. Lee, J. Mater. Chem. C 2013, 1, 914.
    [69] A. Abdellah, K. S. Virdi, R. Meier, M. Döblinger, P. Müller-Buschbaum, C. Scheu, P. Lugli, G. Scarpa, Adv. Funct. Mater. 2012, 22, 4078.
    [70] L.-M. Chen, Z. Hong, W. L. Kwan, C.-H. Lu, Y.-F. Lai, B. Lei, C.-P. Liu, Y. Yang, ACS Nano 2010, 4, 4744.
    [71] C. Girotto, D. Moia, B. P. Rand, P. Heremans, Adv. Funct. Mater. 2011, 21, 64.
    [72] H.-Y. Park, K. Kim, D. Y. Kim, S.-K. Choi, S. M. Jo, S.-Y. Jang, J. Mater. Chem. 2011, 21, 4457.
    [73] C. K. Chan, L. J. Richter, B. Dinardo, C. Jaye, B. R. Conrad, H. W. Ro, D. S. Germack, D. A. Fischer, D. M. DeLongchamp, D. J. Gundlach, Appl. Phys. Lett. 2010, 96, 133304.
    [74] H. Faber, B. Butz, C. Dieker, E. Spiecker, M. Halik, Adv. Funct. Mater. 2013, 23, 2828.
    [75] D. Khim, K.-J. Baeg, B.-K. Yu, S.-J. Kang, M. Kang, Z. Chen, A. Facchetti, D.-Y. Kim, Y.-Y. Noh, J. Mater. Chem. C 2013, 1, 1500.
    [76] S. Liu, W. M. Wang, S. C. Mannsfeld, J. Locklin, P. Erk, M. Gomez, F. Richter, Z. Bao, Langmuir 2007, 23, 7428.
    [77] A. L. Briseno, J. Aizenberg, Y.-J. Han, R. A. Penkala, H. Moon, A. J. Lovinger, C. Kloc, Z. Bao, J. Am. Chem. Soc. 2005, 127, 12164.
    [78] S. C. B. Mannsfeld, A. Sharei, S. Liu, M. E. Roberts, I. McCulloch, M. Heeney, Z. Bao, Adv. Mater. 2008, 20, 4044.
    [79] D. J. Gundlach, J. E. Royer, S. K. Park, S. Subramanian, O. D. Jurchescu, B. H. Hamadani, A. J. Moad, R. J. Kline, L. C. Teague, O. Kirillov, C. A. Richter, J. G. Kushmerick, L. J. Richter, S. R. Parkin, T. N. Jackson, J. E. Anthony, Nat. Mater. 2008, 7, 216.
    [80] A. Kumatani, C. Liu, Y. Li, P. Darmawan, K. Takimiya, T. Minari, K. Tsukagoshi, Sci. Rep. 2012, 2, 393.
    [81] D. Choi, B. Ahn, S. H. Kim, K. Hong, M. Ree, C. E. Park, ACS Appl. Mater. Interfaces 2012, 4, 117.
    [82] S. H. Kim, D. Choi, D. S. Chung, C. Yang, J. Jang, C. E. Park, S.-H. K. Park, Appl. Phys. Lett. 2008, 93, 113306.
    [83] Y. Li, C. Liu, M. V. Lee, Y. Xu, X. Wang, Y. Shi, K. Tsukagoshi, J. Mater. Chem. C 2013, 1, 1352.
    [84] Y. Li, C. Liu, A. Kumatani, P. Darmawan, T. Minari, K. Tsukagoshi, Org. Electron. 2012, 13, 264.
    [85] Y. Li, C. Liu, Y. Xu, T. Minari, P. Darmawan, K. Tsukagoshi, Org. Electron. 2012, 13, 815.
    [86] Y. Fujisaki, H. Ito, Y. Nakajima, M. Nakata, H. Tsuji, T. Yamamoto, H. Furue, T. Kurita, N. Shimidzu, Appl. Phys. Lett. 2013, 102, 153305.
    [87] C. S. Kim, S. J. Jo, J. B. Kim, S. Y. Ryu, J. H. Noh, H. K. Baik, S. J. Lee, Y. S. Kim, Appl. Phys. Lett. 2007, 91, 063503.
    [88] A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, Z. Bao, Nature 2006, 444, 913.
    [89] H. S. Lee, D. Kwak, W. H. Lee, J. H. Cho, K. Cho, J. Phys. Chem. C 2010, 114, 2329.
    [90] Z. Qi, F. Zhang, C.-a. Di, J. Wang, D. Zhu, J. Mater. Chem. C 2013, 1, 3072.
    [91] A. Pierre, M. Sadeghi, M. M. Payne, A. Facchetti, J. E. Anthony, A. C. Arias, Adv. Mater. 2014, 26, 5722.
    [92] S. K. Park, D. A. Mourey, S. Subramanian, J. E. Anthony, T. N. Jackson, Adv. Mater. 2008, 4145.
    [93] Y. Li, C. Liu, A. Kumatani, P. Darmawan, T. Minari, K. Tsukagoshi, AIP Adv. 2011, 1, 022149.
    [94] M. Kano, T. Minari, K. Tsukagoshi, Proc. SPIE 2010, 7778, 777816.
    [95] W. Tang, L. Feng, C. Jiang, G. Yao, J. Zhao, Q. Cui, X. Guo, J. Mater. Chem. C 2014, 2, 5553.
    [96] T. Minari, M. Kano, T. Miyadera, S.-D. Wang, Y. Aoyagi, K. Tsukagoshi, Appl. Phys. Lett. 2009, 94, 093307.
    [97] T. Minari, M. Kano, T. Miyadera, S.-D. Wang, Y. Aoyagi, M. Seto, T. Nemoto, S. Isoda, K. Tsukagoshi, Appl. Phys. Lett. 2008, 92, 173301.
    [98] W. Kang, M. Kitamura, Y. Arakawa, Appl. Phys. Express 2011, 4, 121602.
    [99] M. Kano, T. Minari, K. Tsukagoshi, Appl. Phys. Express 2010, 3, 051601.
    [100] T. Minari, C. Lui, M. Kano, K. Tskukagoshi, Adv. Mater. 2012, 24, 299.
    [101] M. Marinkovic, D. Belaineh, V. Wagner, D. Knipp, Adv. Mater. 2012, 24, 4005.
    [102] H.-W. Lin, W.-Y. Lee, W.-C. Chen, J. Mater. Chem. 2012, 22, 2120.

    QR CODE
    :::