| 研究生: |
鄭天鈞 Tien-Chun Cheng |
|---|---|
| 論文名稱: |
固態氧化物燃料電池複合系統分析與元件熱傳分析 Analysis of Solid Oxide Fuel Cell Hybrid System and Heat Transfer Characteristics |
| 指導教授: |
曾重仁
Chung-Jen Tseng |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 160 |
| 中文關鍵詞: | 質子傳導型固態氧化物燃料電池 、系統模擬 、熱輻射 、隨溫度變化之性質 |
| 外文關鍵詞: | pSOFC, system simulation, radiative heat transfer, temperature-dependent properties |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究發展了一個質子傳導型固態氧化物燃料電池(pSOFC)複合系統,此複合系統包含了一個20kW的pSOFC與渦輪機,並討論不同燃料當量比與空氣當量比條件下,系統的效率與運作特徵。研究採用Matlab / Simulink / Thermolib 軟體進行分析計算,操作壓力討論範圍從1到10,燃料當量比討論範圍從1.25到1.45,空氣當量比討論範圍從2到3.5。結果顯示在pSOFC複合系統中,燃料電池的運作溫度會直接影響輸出功率大小,當燃料當量比增加時,雖然電池發電效率會因為剩餘燃料增加而降低,但較高的運作溫度可使系統輸出更多電功;而當空氣當量比增加時,對燃料電池的效率影響不大,但系統輸出功率則因操作溫度降低而減少。提高操作壓力可以獲得較佳的電池性能與較大的渦輪機輸出功率,但同時也會大幅增加燃料與空氣入口壓縮機之消耗功率。在系統效率的部份,空氣當量比增加可以提昇系統熱電聯產效率,但卻會降低系統電效率,此是因為壓縮機加壓耗能所導致;系統加壓可以提昇系統效率,但在高壓力與高空氣當量比時,因為壓縮機耗能太大,進而使得系統電效率反而下降。添加燃料分流設計可以在維持系統效率的情況下,有效的調整電池運作溫度;空氣分流設計除了能增加系統的操作性之外,調整過的冷卻流道安排亦明顯提昇系統熱能利用,大幅提昇系統電效率的表現。
此外,本研究更針對系統中高溫元件可能面臨的散熱需求,討論元件熱傳特徵與機制分析。討論中考慮了熱輻射機制與自然對流的影響,並且設定了兩種輻射性質隨溫度變化的介質,使用無因次化的方法,分析在各種條件下,同特性之介質對系統熱傳特徵的影響。其中使用有限體積法求解連續方程式、動量方程式、與能量方程式;輻射傳遞方程式是使用 scheme的離散座標法求解;操作參數包含瑞利數(Ra)、由 到 ,傳導-輻射參數(Nr)由10到0.005,光學厚度(τ)由0.1到10。結果顯示輻射性質隨溫度變化之介質,對系統熱傳現象有很明顯的影響;輻射性質不同所造成的差異,會影響系統溫度梯度分佈,進而影響其他的熱傳特徵;而且在熱輻射機制較弱的條件下,此一現象仍能被觀察到。介質的不同輻射性質所造成的影響,會在Nr降低或Ra增加時,產生較大的差異,因為Nr降低代表系統熱輻射機制所佔權重增加;而Ra增加是指自然對流增強,溫度場受旋轉流動扭曲,在局部產生較大的溫度梯度變化,進而使不同輻射特性之介質產生較大的差異。光學厚度增減對此介質差異造成的影響較為不同,太薄或太厚的光學厚度,均會使介質差異造成的流動影響變得不明顯,太薄的的光學厚度表示介質受熱輻射影響較小,太厚的光學厚度則象徵輻射能量會被侷限僅跟鄰近的介質作能量交換;然而,在熱對流能力的表現上,兩種介質隨著光學厚度增厚,而產生了明顯的趨勢差異,case A介質隨著光學厚度增加而抑止了熱對流現象,case B介質則隨著光學厚度增加到一定程度、熱輻射影響變顯著後,會間接的增強熱壁的熱對流現象。
The performance of an intermediate-temperature proton-conducting solid oxide fuel cell (pSOFC) hybrid system is investigated in this work. The hybrid system consists of a 20-kW pSOFC, a micro gas turbine (MGT), and heat exchangers. Heat exchangers are used to recover waste heat from pSOFC and MGT. The performance of the system is analyzed by using Matlab / Simulink / Thermolib. Flow rates of air and hydrogen are controlled by assigning different stoichiometric ratio (St). St considered in this study is 2 – 3.5 for air, and 1.25 - 1.45 for hydrogen. System operation pressure is controlled from 1 to 10 atm. Results show that the operation temperature of pSOFC affects the output power greatly. As fuel St increases, although the cell efficiency drops due to unreacted fuel, the higher cell operation temperature causes more electric power output from system. As air St increases, the cell efficiency does not change too much, but the system output power is reduced because of decreased operation temperature. Increasing operation pressure leads to better pSOFC performance and larger MGT output power, but it also increases the consumption power of compressors of air and fuel. The CHP efficiency can be increased by increasing air St or operation pressure, but it makes the system efficiency lower because of larger consumption power of air compressor. System operability can be enhanced effectively by attaching fuel and air bypass designs. Stack temperature can be adjusted by changing bypass ratio and keep the system performance. Air bypass design also enhances system efficiency via better heat utilization.
In addition, this paper also investigates the heat transfer characteristics of high-temperature components. The effects of temperature dependence of radiative properties of a medium on radiation and natural convection interaction in a rectangular enclosure are studied. The radiative transfer equation is solved using the discrete ordinates method, and the momentum, continuity, and energy equations are solved by the finite volume method. Effects of the conduction-to-radiation parameter (Nr), Rayleigh number (Ra), and optical thickness are discussed. Results show that temperature dependence of radiative properties affects the temperature gradient, and hence the energy transport even in relatively weak radiation condition. As Nr is decreased or Ra is increased, the effects of temperature dependence of radiative properties become more significant. Lower Nr means larger weighting of thermal radiation contribution than convection. Larger Ra means stronger natural convection, and the local temperature difference is enhanced due to convection vortex. This, in turns, enhances the effects of different radiative properties. Effects of radiative properties on convection flow diminish when the medium is either optically thin or optically thick. However, optical thickness affects thermal convection greatly, and the two types of media show completely different trends. In case A, thermal convection is suppressed as the optical thickness is increased. In case B, thermal convection is enhanced when radiation effects become obvious.
[1] M. F. Modest, Radiative heat transfer, 2nd ed. San Diego, USA: Academic Press, 2003.
[2] D. J. Brett, A. Atkinson, N. P. Brandon, and S. J.Skinner, “Intermediate temperature solid oxide fuel cells,” Chem. Soc. Rev., vol. 37, no. 8, pp. 1568–1578, 2008.
[3] A. Demin and P. Tsiakaras, “Thermodynamic analysis of a hydrogen fed solid oxide fuel cell based on a proton conductor,” Int. J. Hydrogen Energy, vol. 26, no. 10, pp. 1103–1108, 2001.
[4] A. K. Demin, P. E. Tsiakaras, V. A. Sobyanin, and S. Y.Hramova, “Thermodynamic analysis of a methane fed SOFC system based on a protonic conductor,” Solid State Ionics, vol. 152–153, pp. 555–560, 2002.
[5] M. Ni, M. K. H. Leung, and D. Y. C. Leung, “Mathematical modelling of proton-conducting solid oxide fuel cells and comparison with oxygen-ion-conducting counterpart,” Fuel Cells, vol. 7, no. 4, pp. 269–278, 2007.
[6] M. Ni, D. Y. C. Leung, and M. K. H. Leung, “Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte,” J. Power Sources, vol. 183, no. 2, pp. 682–686, 2008.
[7] Y. Patcharavorachot, N. P. Brandon, W. Paengjuntuek, S. Assabumrungrat, and A. Arpornwichanop, “Analysis of planar solid oxide fuel cells based on proton-conducting electrolyte,” Solid State Ionics, vol. 181, no. 35–36, pp. 1568–1576, 2010.
[8] A. Choudhury, H. Chandra, and A. Arora, “Application of solid oxide fuel cell technology for power generation - A review,” Renew. Sustain. Energy Rev., vol. 20, pp. 430–442, 2013.
[9] H. Xu, Z. Dang, and B. F. Bai, “Analysis of a 1 kW residential combined heating and power system based on solid oxide fuel cell,” Appl. Therm. Eng., vol. 50, no. 1, pp. 1101–1110, 2013.
[10] Y. Yi, A. D. Rao, J. Brouwer, and G. S. Samuelsen, “Fuel flexibility study of an integrated 25 kW SOFC reformer system,” J. Power Sources, vol. 144, no. 1, pp. 67–76, 2005.
[11] S. Wongchanapai, H. Iwai, M. Saito, and H. Yoshida, “Performance evaluation of a direct-biogas solid oxide fuel cell-micro gas turbine (SOFC-MGT) hybrid combined heat and power (CHP) system,” J. Power Sources, vol. 223, pp. 9–17, 2013.
[12] R. J. Braun, S. A. Klein, and D. T. Reindl, “Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generators in residential applications,” J. Power Sources, vol. 158, no. 2 SPEC. ISS., pp. 1290–1305, 2006.
[13] W. Doherty, A. Reynolds, and D. Kennedy, “Process simulation of biomass gasification integrated with a solid oxide fuel cell stack,” J. Power Sources, vol. 277, pp. 292–303, 2015.
[14] B. Tjaden, M. Gandiglio, A. Lanzini, M. Santarelli, and M. Järvinen, “Small-scale biogas-SOFC plant: Technical analysis and assessment of different fuel reforming options,” Energy and Fuels, vol. 28, no. 6, pp. 4216–4232, 2014.
[15] N. S. Siefert and S. Litster, “Exergy and economic analyses of advanced IGCC-CCS and IGFC-CCS power plants,” Appl. Energy, vol. 107, pp. 315–328, 2013.
[16] T. Kobayashi, “Reflected solar flux for horizontally inhomogeneous atmospheres,” J. Atmos. Sci., vol. 48, pp. 2436–2447, 1991.
[17] V. L. Galinsky, “3D radiative transfer in weakly inhomogeneous medium. Part ii: discrete ordinate method and effective algorithm for its inversion,” J. Atmos. Sci., vol. 57, no. 10, pp. 1635–1645, 2000.
[18] A. Yücel, S. Acharya, and M. L. Williams, “Natural convection and radiation in a square enclosure,” Numer. Heat Transf. Part A Appl., vol. 15, no. 2, pp. 261–278, 1989.
[19] Z. Tan and J. R. Howell, “Combined radiation and natural convection in a two-dimensional participating square medium,” Int. J. Heat Mass Transf., vol. 34, no. 3, pp. 785–793, 1991.
[20] G. Colomer, M. Costa, R. Cònsul, and A. Oliva, “Three-dimensional numerical simulation of convection and radiation in a differentially heated cavity using the discrete ordinates method,” Int. J. Heat Mass Transf., vol. 47, no. 2, pp. 257–269, 2004.
[21] S. Sangapatnam, B. R. Nandanoor, and R. P. Vallampati, “Radiation and mass transfer effects on MHD free convection flow past an impulsively started isothermal vertical plate with dissipation,” Therm. Sci., vol. 13, no. 2, pp. 171–181, 2009.
[22] L. Kolsi, A. Abidi, C. Maatki, M. N. Borjini, and H. BenAissia, “Combined radiation-natural convection in three-dimensional verticals cavities,” Therm. Sci., vol. 15, no. SUPPL.2, pp. 383–390, 2011.
[23] J. R. Tsai and M. N. Özişik, “Radiation in cylindrical symmetry with anisotropic scattering and variable properties,” Int. J. Heat Mass Transf., vol. 33, no. 12, pp. 2651–2658, 1990.
[24] H. Y. Li, M. N. Ozisik, and J. R. Tsai, “Two-dimensional radiation in a cylinder with spatially varying albedo,” J. Thermophys. Heat Transf., vol. 6, no. 1, pp. 180–182, 1992.
[25] J. T. Farmer and J. R. Howell, “Monte Carlo prediction of radiative heat transfer in inhomogeneous, anisotropic, nongray media,” J. Thermophys. heat Transf., vol. 8, no. 1, pp. 133–139, 1994.
[26] L. M. Ruan and H. P. Tan, “Solutaions of radiative heat transfer in three-dimensional inhomogeneous, scattering media,” J. Heat Transfer, vol. 124, pp. 985–988, 2002.
[27] C. L. Tseng, C. J. Tseng, K. Y. Cheng, L. W. Hourng, J. C. Chen, L. C. Weng, and S. K. Wu, “Numerical analysis of the solar reactor design for a photoelectrochemical hydrogen production system,” Int. J. Hydrogen Energy, vol. 37, no. 17, pp. 13053–13059, 2012.
[28] M. Ravishankar, S. Mazumder, and M. Sankar, “Application of the modified differential approximation for radiative transfer to arbitrary geometry,” J. Quant. Spectrosc. Radiat. Transf., vol. 111, no. 14, pp. 2052–2069, 2010.
[29] R. Muthukumaran, S. C. Mishra, S. Maruyama, and K. Mitra, “Assessment of signals from a tissue phantom subjected to radiation sources of temporal spans of the order of a nano-, pico-, and femto-second—a numerical study,” Numer. Heat Transf. Part A Appl., vol. 60, no. 2, pp. 154–170, 2011.
[30] H. Chu, F. Liu, and H. Zhou, “Calculations of gas radiation heat transfer in a two-dimensional rectangular enclosure using the line-by-line approach and the statistical narrow-band correlated-k model,” Int. J. Therm. Sci., vol. 59, pp. 66–74, 2012.
[31] Y. Q. Jin, “An approach to two-dimensional vector thermal radiative transfer for spatially inhomogenous random media,” J. Appl. Phys., vol. 69, no. 11, pp. 7594–7600, 1991.
[32] S. Meftah, A. Ibrahim, D. Lemonnier, and A. Benbrik, “Coupled radiation and double diffusive convection in nongray air-CO2 and air-H2O mixtures in cooperating situations,” Numer. Heat Transf. Part A Appl., vol. 56, no. 1, pp. 1–19, 2009.
[33] F. Moufekkir, M. A. Moussaoui, A. Mezrhab, M. Bouzidi, and D. Lemonnier, “Combined double-diffusive convection and radiation in a square enclosure filled with semitransparent fluid,” Comput. Fluids, vol. 69, pp. 172–178, 2012.
[34] A. Moradi, T. Hayat, and A. Alsaedi, “Convection-radiation thermal analysis of triangular porous fins with temperature-dependent thermal conductivity by DTM,” Energy Convers. Manag., vol. 77, pp. 70–77, 2014.
[35] Y. S. Sun, J. Ma, and B. W. Li, “Application of collocation spectral method for irregular convective-radiative fins with temperature-dependent internal heat generation and thermal properties,” Int. J. Thermophys., vol. 36, no. 10–11, pp. 3133–3152, 2015.
[36] M. M. Hussain, X. Li, and I. Dincer, “Mathematical modeling of planar solid oxide fuel cells,” J. Power Sources, vol. 161, no. 2, pp. 1012–1022, 2006.
[37] J. Bu, P. G. Jonsson, and Z. Zhao, “Ionic conductivity of dense BaZr0.5Ce0.3Ln0.2O3-x (Ln = Y, Sm, Gd, Dy) electrolytes,” J. Power Sources, vol. 272, pp. 789–793, 2014.
[38] R. O’Hayre, 燃料電池基礎. 台北: 全華圖書股份有限公司, 2008.
[39] S. V. Patankar, Numerical heat transfer and fluid flow. New York, USA: McGraw-Hill, 1980.
[40] H. Iwahara, “High temperature proton conducting oxides and their applications to solid electrolyte fuel cells and steam electrolyzer for hydrogen production,” Solid State Ionics, vol. 28–30, no. PART 1, pp. 573–578, 1988.