跳到主要內容

簡易檢索 / 詳目顯示

研究生: 魏長青
Chung-Chung Wei
論文名稱: 稻殼灰分-氧化鋅複合擔體銅觸媒應用於甲醇部份氧化產氫之研究
Hydrogen Production by Partial Oxidation of Methanol over Cu/RHA-ZnO Catalysts
指導教授: 張奉文
Feg-Wen Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 104
中文關鍵詞: 銅觸媒稻殼灰分-氧化鋅複合擔體稻殼灰分甲醇部份氧化反應
外文關鍵詞: copper catalyst, RHA-ZnO binary support, hydrogen production, partial oxdation of methanol
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以初濕含浸法製備RHA-ZnO作為複合擔體,利用沉澱固著法使用銅金屬鹽類製備銅金屬觸媒,分別針對不同擔體比例條件、煅燒溫度、進料比例(O2/CH3OH)及反應溫度等變因進行討論。研究中利用熱重分析儀 (TGA)、X-ray繞射分析儀(XRD)、程式升溫還原(TPR)和穿透式電子顯微鏡(TEM)等儀器,分別對擔體或觸媒進行物性分析鑑定。以甲醇部份氧化反應(POM)探討各項操作變因對於甲醇轉化率、氫氣選擇率及一氧化碳選擇率之影響,目的在了解甲醇部份氧化反應產製氫氣及製備觸媒的最佳條件。
    由XRD圖譜得知,Cu/RHA-ZnO (Si/Zn=9/1)的擔體比例為門檻,ZnO的含量越多,不只ZnO的繞射峰會越明顯,Cu的繞射峰也會變的明顯而有結晶狀態出現,而Si/Zn=9/1以下的擔體比例銅金屬則因粒徑太小無法在圖譜上可觀察到明顯波峰,而由Scherrer方程式所算出來的晶粒大小發現,ZnO的含量越多,銅的晶粒也隨之變大。而針對複合擔體觸媒Cu/RHA-ZnO (Si/Zn=9/1)做不同煅燒溫度的比較,XRD圖譜顯示煅燒溫度在573 K時並無法將硝酸銅鹽類完全分解,對照TGA圖譜和POM反應測試可知最佳煅燒溫度為673 K。
    反應溫度低於448 K無法使反應進行,反應到達523 K時觸媒有最好的活性表現,最佳的反應物進料比為O2/CH3OH=0.3的比例。


    In the research, we used the rice husk ash (RHA) and ZnO to prepare the binary support by incipient wetness impregnation method. After the binary support prepared, we deposited the copper metal on the binary support by deposite-precipitation method.
    N2O titration results indicated that the copper particle size increased with the increasing ZnO content in Cu/RHA-ZnO catalysts. The specific surface area of the reduced catalyst was increased with decreasing ZnO content. The catalysts showed higher activity after reduction. The active state of Cu/RHA-ZnO catalysts after reduction was Cu0 from XRD results. The dispersion of Cu/RHA-ZnO catalysts was decreased with increasing ZnO content. In XRD patterns and ICP-AES results, we could find that copper was precipitated on the support but it was too small to be detected on the support (Si/Zn, 9/1) which indicated that copper was highly dispersed on the support. Comparing with N2O titration results and TPR results, the catalyst reducibility depends on the copper particle size. We also found that Cu/RHA-ZnO (Si/Zn= 9/1) catalyst has more acid sites to improve the activity of partial oxidation of methanol. We calculated the copper particle size from TEM images and the average particle size of Cu/RHA-ZnO catalysts at 9/1(Si/Zn) atomic ratio was 3.5 nm. The appropriate calcination temperature is 673 K. When the ZnO content increased, the methanol conversion decreased slightly and the hydrogen selectivity decreased significantly. The feed ratio and appropriate reaction temperature were 0.3 and 523 K, respectively.

    第一章 緒論 1 1-1 前言 1 1-2 甲醇產氫反應 2 1-3 研究內容與論文架構 4 第二章 文獻回顧 6 2-1 銅觸媒的性質 6 2-2 銅觸媒的製備方法 7 2-3 煅燒程序 9 2-4 銅觸媒的活性點 10 2-5 還原程序 10 2-6 擔體作用 11 第三章 實驗方法與裝置 13 3-1 稻殼灰分擔體的製備 13 3-1-1 水洗程序 13 3-1-2 酸洗程序 14 3-1-3 熱解程序 16 3-1-4 碳燒程序 18 3-2 複合擔體的製備 18 3-3 銅觸媒擔載在複合擔體的製備 20 3-4 稻殼灰分與銅觸媒的鑑定分析 21 3-4-1 感應耦合電漿原子放射光譜儀 (ICP-AES) 23 3-4-2 熱重分析 (TGA) 24 3-4-3 X-ray繞射分析(XRD) 26 3-4-4 程式升溫還原 (TPR) 29 3-4-5 氨氣程式升溫脫附 (NH3-TPD) 31 3-4-6 N2O分解吸附 (N2O-Titration) 33 3-4-7 穿透式電子顯微鏡 (TEM) 36 3-5 觸媒活性測試---甲醇部份氧化產氫反應 38 3-6 實驗流程與操作變因 40 3-7 數據計算與處理 43 3-7-1 複合擔體製備的比例計算 43 3-7-2 銅觸媒理論載量的定義與計算 44 3-7-3 甲醇轉化率的計算 44 3-7-4 氫氣選擇率及一氧化碳選擇率的計算 49 3-8 藥品、氣體及儀器設備 51 3-8-1 藥品 51 3-8-2 氣體 51 3-8-3 儀器設備 52 第四章 結果與討論 54 4-1 物性分析 54 4-1-1 觸媒上各成份的含量分析 (ICP-AES) 54 4-1-2 熱重分析 (TGA) 57 4-1-3 X-ray 繞射結果分析 (XRD) 59 4-1-4 程式升溫還原結果分析 (TPR) 64 4-1-5 氨氣程式升溫脫附結果分析 (NH3-TPD) 68 4-1-6 N2O分解吸附反應結果分析 (N2O-Titration analysis) 70 4-1-7 穿透式電子顯微鏡測量結果 (TEM analysis) 72 4-2 化性分析 75 4-2-1複合擔體原子比對觸媒活性的影響 76 4-2-2 煅燒溫度對觸媒活性的影響 80 4-2-3 反應物進料比對觸媒活性的影響 84 4-2-4 反應溫度對觸媒活性的影響 88 4-2-5 Cu/RHA-ZnO和Cu/SiO2-ZnO的比較 90 第五章 結論 97 參考文獻 100

    Agrell, J., M. Boutonnet, I. Melian-Cabrera, J. L.G. Fierro, “Production of hydrogen from methanol over binary Cu/ZnO catalysts Part I. Catalyst preparation and characterization”, Applied Catalysis A: General, 253, 201, (2003).
    Agrell, J., K. Hasselbo, K. Jansson, S. G. Järås, M. Boutonnet, “Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique”, Applied Catalysis A: General, 211, 239, (2001).
    Alejo, L., R. Lago, M.A. Pefia, J.L.G. Fierro, “Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts”, Applied Catalysis A: General, 162, 281, (1997).
    Berndt, H., U. Muller, ”Determination of the surface area of dispersed ruthenium by reactive nitrous oxide chemisorption.”. Applied Catalysis, A: General, 180, 63, (1999).
    Cesar, D.V., C.A. Perez, V.M.M. Salim, M. Schmal, “Stability and Selectivity of Bimetallic Cu-Co/SiO2 Catalysts for Cyclohexanol Dehydrogenation”, Applied Catalysis A: General, 176, 205, (1999).
    Chan, H. Y. H., C. T. Williams, M. J. Weaver, C. G. Takoudis, “Methanol oxidation on palladium compared to rhodium at ambient pressures as probed by surface-enhanced Raman and mass spectroscopies”, Journal of Catalysis, 174, 191, (1998).
    Dietz, W. A., “Response factors for gas chromatographic analyses”, Journal of Gas Chromatagraph, 5, 68, (1967) .
    Eswaramoorthi, I., V. Sundaramurthy, A.K. Dalai, “Partial oxidation of methanol for hydrogen production over carbon nanotubes supported Cu/Zn catalysts”, Applied Catalysis A: General, 313, 22, (2006).
    Eswaramoorthi, I., A.K. Dalai, “A comparative study on the performance of mesoporous SBA-15 supported Pd–Zn catalysts in partial oxidation and steam reforming of methanol for hydrogen production”, international journal of hydrogen energy, 34, 2580, (2009).
    Fisher, I.A., H.C. Woo, A.T. Bell, “Effects of zirconia promotion on the activity of Cu/SiO2 for methanol synthesis from CO/H2 and CO2/H2”, Catalysis Letters, 44, 11, (1997).
    Fisher, I.A., and A.T. Bell, “A Mechanistic Study of methanol Decomposition over Cu/SiO2,ZrO2/SiO2 and Cu/ZrO2/SiO2”, Journal of Catalysis, 184, 357, (1999).
    Fixman, E.M., M.C. Abello, O.F. Gorriz, L.A. Arrua, ”Preparation of Cu/SiO2 catalysts with and without tartaric acid as template via a sol-gel process”, Applied Catalysis, A: General, 319, 111, (2008).
    Franckerts J. and G.F. Froment, “Kinetic Study of the Dehydrogenation of Ethanol”, Chemical Engineering Science, 19, 807, (1964).
    Geus, J.W., “Production and Thermal pretreatment of Supported Catalysts”, Preparation of CatalystsⅢ-Scientific Bases for the Preparation of Heterogeneous Catalysts, 16, 1, (1983).
    Hoffmann, J., S. Schauermann, , V. Johánek, J. Hartmann, J. Libuda, “The kinetics of methanol oxidation on a supported Pd model catalyst : molecular beam and TR-IRAS experiments”, Journal of Catalysis, 213, 176, (2003) .
    Horny, C., A. Renken, L. Kiwi-Minsker, “Compact string reactor for autothermal hydrogen production”, Catalysis Today, 120, 45, (2007).
    Huang, T.J., S.L. Chren, “Kinetics of partial oxidation of methanol over a copper-zinc catalyst”, Applied Catalysis, 40, 43, (1988).
    Jun, K.W., W.J. Shen,K.S. Rama, K.W. Lee, ”Residual sodium effect on the catalytic activity of Cu/ZnO/Al2O3 in methanol synthesis from CO2 hydrogenation”, Applied Catalysis, A: General, 174, 231, (1998).
    Jackson, S.D., F.J. Robertson, J. Willis, “A Study of Copper/Silica Catalysts: Reduction, Adsorption and Reaction”, Journal of Molecular Catalysis, 63, 255, (1990).
    Luo, L., J. Wang, “A Comparative Study of Partial Oxidation of Methanol over Zinc Oxide Supported Metallic Catalysts”, Catalysis Letters, 126, 325, (2008).
    Park, I., J. Lee, Y. Rhee, Y. Han, H. Kim, “CuO/ZnO/SiO2 catalysts for cyclization of propyleneglycol with ethylenediamine to 2-methylpyrazine”, Applied Catalysis A: General, 253 , 249, (2003) .
    Reitz, T.L., S. Ahmed, M. Krumpelt, R. Kumar, H.H. Kung, “Characterization of CuO/ZnO under oxidizing conditions for the oxidative methanol reforming reaction”, Journal of Molecular Catalysis A: Chemical, 162, 275, (2000a).
    Reitz, T.L., S. Ahmed, M. Krumpelt, R. Kumar, H.H. Kung, “Methanol reforming over CuO/ZnO under oxidizing conditions”, Studies in Surface Science and Catalysis, 130, 3645, (2000b).
    Riitta R., N. Marita Veringa, R. L. Keiski, “The effect of ageing time on co-precipitated Cu/ZnO/ZrO2 catalysts used in methanol synthesis from CO2 and H2”, Topics in Catalysis , 45,1, (2007).
    Stefan R., V. Fre’de’ ric, “A thermogravimetric study of the partial oxidation of methanol for hydrogen production over a Cu/ZnO/Al2O3 catalys.”, Applied Catalysis B: Environmental, 84, 827, (2008).
    Traxel, B. E., K. L. Hohn, “Partial oxidation of methanol at millisecond contact times”, Applied Catalysis A : General, 244, 129, (2003).
    Turco, M., G. Bagnasco, C. Cammarano, P. Senese, U. Costantino, M. Sisani, “Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol:The role of Cu and the dispersing oxide matrix”, Applied Catalysis B: Environmental, 77, 46, (2007).
    van den Oetelaar L.C.A., A. Partridge, S.L.G. Toussaint, C.F.J. Flipse, H.H. Brongersma, “A Surface science study of model catalysts. 2.Metal-support interactions in Cu/SiO2 model catalysts”, Journal of Physical Chemistry B, 102, 9532, (1998).
    van der Grift C.J.G., P.A. Elberse, A. Mulder, J.W. Geus, “Preparation of silica-supported copper catalysts by means of deposition precipitation”, Applied Catalysis., 59, 275, (1990a).
    van der Grift, C.J.G., Mulder A., Geus, J.W., “Characterization of silica-supported copper catalysts by means of temperature – programmed reduction”, Applied Catalysis, 60, 181, (1990b).
    van der Grift, C.J.G., Wielers A.F.H., Joghi B.P.J., Van Beijnum J., De Boer M., Versluijs-Helder M., Geus J.W., “Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles”, Journal of Molecular Catalysis, 131, 178, (1991).
    Wang, D., Hao, Z., Cheng, D., Shi, X., Hu, C., “Influence of pretreatment condition on low-temperature CO oxidation over Au/MOx/Al2O3 catalysts”Journal of Molecular Catalysis A : Chemical, 200, 229, (2003) .
    Wang, Z., W. Wang, G. Lu, “Studies on the active species and on dispersion of Cu in Cu/SiO2 and Cu/Zn/SiO2 for hydrogen production via methanol partial oxidation”, International Journal of Hydrogen Energy, 28, 151, (2003).
    Yahiro, H., K. Nakaya, T. Yamamoto, K. Saiki, H. Yamaura, “Effect of calcinations temperature on the catalytic activity of copper supported onγ-alumina for the water-gas-shift reaction”, Catalysis Communications, 7, 228, (2006)
    吳榮宗, “工業觸媒概論”, “國興出版社”, (1995).
    李澤安, “氧化矽-氧化鋅複合擔體銅觸媒應用於甲醇部份氧化產製氫氣之研究”, 中央大學化學工程與材料工程研究所, (2007).
    郭茂穗, “以不同方法製備稻殼灰分-氧化鋁擔載鎳觸媒之研究”, 中央大學化學工程與材料工程研究所, (2002).
    黃志翔, “稻殼灰分擔載銅觸媒應用於氧化性甲醇蒸氣重組產製氫氣之研究”, 中央大學化學工程與材料工程研究所, (2008).

    QR CODE
    :::