跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳俊仁
Jin-Ren Chen
論文名稱: Trefftz Method 解含圓球或橢圓球空
Trefftz Method for analyzing the scattering field of 3-D elastic body with spherical or spheroidal cavity
指導教授: 鍾弘光
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 82
中文關鍵詞: Trefftz法散射簡諧波應力波扁橢圓球橢圓球波動函數圓碟形裂縫
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 最後並對求解所需之橢圓體波動函數之求法加以研究,並延伸至較高頻率之情況,本文提出之方法可求得準確之特徵值。



    Finally, the methods to finding the spheroidal wave functions were also discussed the case when the multiplications of wavenumber and focus length were up to 10 for oblate spheroid. A better method to find the accurate characteristic values was suggested

    中文摘要 i 英文摘要 ii 誌謝 iii 目錄 iv 符號說明 vii 圖目錄 xi 表目錄 xii 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 3 1-3 本文簡介 4 第二章 含圓球空穴之公式推導 5 2-1 緒論 5 2-2 球座標之漢姆荷茲方程式及其完全解 6 2-3 受平面射波影響之含圓球空穴之彈性體 9 第三章 含橢圓球空穴之公式推導 13 3-1 緒論 13 3-2 扁橢圓球座標之漢姆荷茲方程式及其完全解 13 3-3 受平面入射波影響之含橢圓球空穴彈性體 16 第四章 扁橢圓球波動函數 20 4-1 緒論 20 4-2 橢圓球波動函數之產生 20 4-3 以級數展開法求解扁橢圓球波動函數 22 4-4 以數值方法求解扁橢圓球波動函數 25 4-5 級數展開法與數值方法混合求解 27 第五章 算例與驗證 31 5-1 圓球空穴 31 5-2 橢圓球空穴 31 5-3 驗證 32 5-3-1 扁橢圓球之短軸長極接近長軸長32 5-3-2 扁橢圓球之短軸極短 33 第六章 結論與建議 34 6-1 結論 34 6-2 建議與展望 35 參考文獻 36 附錄 65

    1.Budreck,D.E. and Achenbach, J.D., ”Scattering from three
    dimensional plannar cracks by the boundary integral equation
    method”, J. Appl. Mech. 55, 405-412 (1988).
    2.Cheung,Y. K. , Jin, W. G. and Zienkiewicz, O. C., “Direct
    solution procedure for solution of harmonic problems using
    complete Nonsingular Trefftz function”,
    commun.Appl.Numer.Method, 5, 159-169(1989)
    3.Cheung,Y. K. , Jin, W. G. and Zienkiewicz, O. C., “Solution
    of Helmholtz Equation by Trefftz Method,J. Numer. Methods
    Eng.,32,63-78(1991).
    4.Chieng,S.L., “Mutiple scattering of elastic wave by parallel
    cylinders”, J, appl.Mech., 36, 523-527(1969).
    5.Flammer, C., Spheroidal wave function.Standford Univ. Press,
    Standford, Calif.USA (1957).
    6.Gradshteyn,I.S. and Ryzhik, I. M. Table of integrals,series,
    and products, Academic Press, Inc., New York (1965).
    7.Graff, K. F., Wave Motion in Elastic Solids, Ohio State Univ.
    Press, Northern Ireland (1975).
    8.Herrera,W.S.,"A boundary integral method for acoustic radia-
    tion and scattering",Proc.Nath.Acad.Sci. (U.S.A),77,4395-4398
    9.Hunter, H.E., Kirk, D.B., Senior T.B.A, Wittenberg, E.R. ”
    Tables of prolate Spheroidal functions for m=0” Air force
    cambridge research laboratory Scientific report No.1,april
    (1965)
    10.Lin, T. and Ueda, M. “Sound scattering of a plane wave
    obliquely incident on a cylinder”,J. Acoust. Soc. Am. 86
    (6), 2363 —2368 (1989).
    11.Lin,W.and Keer,L. M.,"Scattering by a planar three-dimension
    crack", J.Acoust . Soc. Am. 82(4), pp1442-1448 (1987).
    12.Liu, Diankui and Gai, bingzheng and Tao,Kuiyuan “Applica-
    tion of the method of complex functions to dynamic stress
    concentrations”, Wave Motion, 4, 293-304 (1982).
    13.Liu, Diankui and Han, Feng ,”The scattering of plane SH-
    wave by noncircular cavity in a anisotropic media",J.of App.
    Mech.,60,769—772 (1993)
    14.Mal,A.K.,"Interaction of Elastic Waves with a Penny-shape
    crack”,Int. J.Eng. Sci., vol. 8, pp.381-388 (1970).
    15.Morse, P. and Feshbach, H. Methods of theoretical physics
    Vols.1 and 2. McGraw-Hill, New York(1953)
    16.Pao, Y. H. and Mow, C. C., “Scattering of plane compre-
    ssional wave by a Spherical obstacle” , J, Appl. Phys., 34,
    493-499 (1963).
    17.Piquette, J. C.,“Spherical wave scattering by an elastic
    solid cylinder of infinite length”, J. Acoust. Soc. Am. 95
    (5) , 1248- 1259 (1986)
    18.Schroll, K. R. and Cheng, S. L.,“Dynamic Stress Around
    Elliptical discontinutities”, Trans. ASME, J. Appl. Mech.,
    March133-138(1972) .
    19.Stratton, J. Morse, A. P.M., Chu, L. J, Little, J. D. C.
    and Corbato, F. J., “Spheroidal Wave Functions”, the
    Technology Press of M..I.T and John Wiley & Sons, New York
    (1953)
    20.Trefftz, E., ”Ein Gegenstruck zum Rit’zschem Verfohren”,
    Proc.2nd Int. cong.Appl. Mech., Zurich(1926)
    21.Udagawa, K. and Miyazaki, Y, ” Diffraction of a plane wave
    by perfectly conducting elliptic cylinder-a study of
    conformal mapping technique”, J. Inst. Elec. Comm. Eng.
    Japan 48, 43-53 (1965).
    22.William,H. ,Numerical Recipes in Fortran ,Cambridre NewYork
    Cambridge Univ. Press (1992)
    23.林柏樹,”Trefftz 法解二維漢姆荷茲問題”,中原大學土木研究所
    碩士論文(1997).
    24.黃蕙茹,”Trefftz 法解三維漢姆荷茲問題”, 中原大學土木研究
    所碩士論文(1998)
    25.吳晨生,”Trefftz法分析軸對稱聲波散射問題”,中原大學土木研究
    所碩士論文(1999)
    26.鍾弘光,陳俊仁,”Trefftz法及保角轉換解含橢圓球體空穴之彈性散
    射場”國科會計畫NSC 89-221-E-231-001(2000)
    27.鍾弘光,陳俊仁,”Trefftz法及保角轉換解含橢圓球體空穴之彈性散
    射場”清雲學報,第二十卷,第一期,p131-136(2000)

    QR CODE
    :::