| 研究生: |
朱薇如 WeiJu Chu |
|---|---|
| 論文名稱: |
製備均一粒徑有機無機核殼微小球 The preparation of monodisperse organic-inorganic core-shell spheres |
| 指導教授: |
陳暉
Hui Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 二氧化矽中空球 、光子晶體 、擴散 、Stober 、均一粒徑 |
| 外文關鍵詞: | hollow sphere, monodisperse, diffusion, photonic crystal |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討具有均一粒徑之有機-無機核殼結構粒子。根據粒子大小,主要可分為均一粒徑之微米級與次微米球。
關於製備微米級有機-無機均一粒徑粒子,主要以硬模版法,先以分散聚合法將苯乙烯單體(Styrene)合成實心內核粒子,透過聚乙烯吡咯烷酮(穩定劑)穩定粒子防止凝聚,將四乙氧基矽烷包覆在實心內核上。微米級不同粒徑大小的聚苯乙烯(PS)球可由調整乙醇在乙醇水溶液中的重量百分比而製備出。將PS球均勻分散在乙醇中,透過Stőber方法將四乙氧基矽烷(TEOS)包覆在PS球上,形成均一粒徑的PS-TEOS核殼結構粒子。隨著TEOS加入量的增加,外殼厚度也隨之增加。最後以高溫鍛燒,可製備出不同粒徑與殼厚的二氧化矽中空球,粒徑約在1~2 μm間。
製備次微米級有機-無機均一粒徑粒子方法與前者相同,亦使用硬模版法進行製備。首先使用無乳化劑乳化聚合法,在高溫下製備均一粒徑聚苯乙烯次微米球作為內核。製備PS球過程中,在單體轉化率約96%時,加入不同種類矽烷,快速合成均一粒徑有機-無機核殼次微米球。所使用的矽烷種類包含四乙氧基矽烷, 甲基三乙氧基矽烷(MTES) ,二甲基二乙基矽烷(DMDES), 3-甲基丙烯酸基丙基三甲氧基矽烷(MPS)。所得之均一粒徑核殼次微米球,其球徑皆在180~200 nm。經水洗測試發現,特定矽烷MTES與PS球內核的結合性良好;透過TEM儀器觀測,發現PS球轉化率低時,核殼球粒徑擴大,認為是矽烷擴散進PS球內核所致。此外,改變加入矽烷單體的時間,亦可製備出均一粒徑的核殼結構粒子。對於在PS球特定轉化率下,提高添加的矽烷單體量,可增大均一粒徑次微米球之粒徑。此類核殼結構粒子透過毛細力驅動,可製備成光子晶體作為應用。
The study was focused on the preparation of monodisperse organic-inorganic core-shell structures microspheres. According to the particles size, the preparations were divided into two parts: monodisperse microscale and submicroscale spheres.
For the preparation of microscale monodisperse organic-inorganic particles, the core particles-styrene spheres were first produced by dispersion polymerization. With the help of polyvinylpyrrolidone, the phenomenon of particles aggregation were avoided, so the polystyrene(PS) spheres can be wrapped in tetraethoxysilane in the second step. Controlling the ethanol weight percent in ethanol solution affected the size of PS spheres. In the second step, the PS spheres were dispersed in ethanol with adding tetraethoxysilane step by step. After 24hrs, monodisperse PS-SiO2 structure was formed. The diameters of the core-shell particles raised up as the amount of tetraethoxysilane increased. The hollow spheres were obtained after taking the organic-inorganic particles to calcine under high temperature. The diameter range of hollow spheres diameter was 1~2μm.
The method to synthesize submicroscale monodisperse organic-inorganic particles was similar to the way of producing microscale particles. Both the core parts were first prepared, and then silane was added to modify the organic core surface. For submicroscale organic-inorganic particles, different kinds of silane, including tetraethylsilane(TEOS), methyltriethoxysilane(MTES), dimethyldi-
ethoxysilane(DMDES), 3-(Trimethoxysilyl)propyl methacrylate(MPS) were added during the polymerization of styrene by soap-free
polymerization. The size of the organic-inorganic particles was about 180 nm to 210 nm. The core-shell structure was clearly observed under TEM. With the results of TGA and the TEM photograph indicating that silane were diffused into PS spheres. As the amount of silane increased, the diameter of core-shell particles increased, too. These organic-inorganic particles self-assembled photonic crystal after heating due to capillary force.
1. S. Kawaguchi, K. Ito, “Dispersion Polymerizaton,” Adv Polym Sci 175: 299–328, 2005
2. A. J. Paine, et. al, “Dispersion Polymerization of Styrene in Polar Sovlent. 6. Influence of Reaction Parameters on Particle Size and Molecular Weight in Poly(N-vinylpyrro1idone)-Stabilized Reactions Macromolecules”, Macromolecules, 23, 3104-3109, 1990
3. E. J. Keith, B. Barrett, Polym. J. 5, 259 (1973)
4. S. Shen, et. al, J. Polym. Sci. Part A: Polym. Chem. 31, 1393, 1993
5. S. Shen, et. al, J. Polym. Sci. Part A: Polym. Chem. 32, 1087, 1994
6. S. J. Fang, et. Al, “Emulsifier-free emulsion copolymerization of styrene and acrylamide using an amphoteric initiator”, Colloid Polym Sci, 278:864-871, 2000
7. 羅名譽,快 速 合 成 具 核 殼 結 構 之 均 ㄧ 粒 徑 次 微 米 球 與 其 表 面 改 質 之 特 性 研 究,中央大學碩士論文,2009年
8. A. Schmid, et. al, “Polystyrene-Silica Nanocomposite Particles via Alcoholic Dispersion Polymerization Using a Cationic Azo Initiator, ” Langmuir, 22, 4923-4927, 2006
9. H. Ahmad, et. al, “Synthesis of Biocompatible Sterically-Stabilized Poly(2-(methacryloyloxy) ethyl phosphorylcholine) Latexes via Dispersion Polymerization in Alcohol/ Water Mixtures, ” Langmuir, 25(19), 11442–11449, 2009
10. V. H. Nguyen, et. al, ” Preparation of poly(vinyl pivalate) microspheres by dispersion polymerization in an ionic liquid and saponification for the preparation of poly(vinyl alcohol) with high syndiotacticity,” European Polymer Journal, 46, 2190–2198, 2010
11. D. Nagao, et. al, “Preparation of Micrometer-Sized Polymer Particles with Control of Initiator Dissociation during Soap-Free Emulsion Polymerization,” Langmuir, 22, 10958-10962, 2006
12. G. Kim, et. al, “ Effect of homogeneity of methanol/water/monomer mixture on the mode of polymerization of MMA: Soap-free emulsion polymerization versus dispersion polymerization, ” Polymer, 51, 1197–1205, 2010
13. E. Rusen, et. al, “Obtaining of monodisperse particles through soap-free and seeded polymerization, respectively, through polymerization in the presence of C60,” Colloid Polym Sci, 288:769–776, 2010
14. K. Nozawa, et. al, ” Smart Control of Monodisperse Sto1ber Silica Particles: Effect of Reactant Addition Rate on Growth Process,” Langmuir, 21, 1516-1523, 2005
15. H. Nakabayashi, et. al, “Electrolyte-Added One-Pot Synthesis for Producing Monodisperse, Micrometer-Sized Silica Particles up to 7 μm, ” Langmuir, 26(10), 7512–7515, 2010
16. Stőber. W, A. Fink, “Controlled growth of monodisperse silica spheres in the micro size range” Journal of Colloid and Interface Science, 26, p62-p69, 1968
17. C. Graf, et. al, “A General Method To Coat Colloidal Particles with Silica,” Langmuir, 19, 6693-6700, 2003
18. Y. Zhu, et. al, “PEGylated hollow mesoporous silica nanoparticles as potential drug delivery vehicles,” Microporous and Mesoporous Materials, 141, 199–206, 2011
19. Y. Maa and L. Qi, “Solution-phase synthesis of inorganic hollow structures by templating strategies,” Journal of Colloid and Interface Science, 335, 1–10, 2009
20. 任恆立, 二氧化矽中空球儲氫性能分析, 逢甲大學化學工程系碩士論文,2006年
21. L. Zhang, et. al, “Hollow Silica Spheres: Synthesis and Mechanical Properties,” Langmuir, 25, 2711-2717, 2009
22. M. Fujiwara, et. al, “Preparation of Hierarchical Architectures of Silica Particles with Hollow Structure and Nanoparticle Shells: A Material for the High Reflectivity of UV and Visible Light,” Langmuir, 26(9), 6561–6567, 2010
23. L. Han, et. al, “Anionic surfactants templating route for synthesizing silica hollow spheres with different shell porosity,” Solid State Sciences, 13, 721-728, 2011
24. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. ,58, 2059, 1987
25. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. , 58, 2486 ,1987
26. Z. Yu, et. al, “Uniform fluorescent photonic crystal supraballs generated from nanocrystal-loaded hydrogel microspheres,” J. Mater. Chem., 20, 6182–6188, 2010
27. J.-F. Dechezellesa, et. al, “Inhibition and exaltation of emission in layer-controlled colloidal photonic architectures,” Colloids and Surfaces A: Physicochem. Eng. Aspects, 373,1–5 ,(2011)
28. A. Z. Khokhar, et. al, “ Photonic crystal heterostructures from self-assembled opals, ” Appl Phys A, 102: 281–287, (2011)
29. Vishwas V. Hardikar, Egon Matijevi´c1, “Coating of Nanosize Silver Particles with Silica,” Journal of Colloid and Interface Science 221, 133–136 (2000)
30. Xuefeng Song and Lian Gao, “Synthesis, Characterization, and Optical Properties of Well-Defined N-Doped, Hollow Silica/Titania Hybrid Microspheres,” Langmuir , 23, 11850-11856, 2007
31. M. Agrawa, et. al, “Synthesis of Novel Tantalum Oxide Sub-micrometer Hollow Spheres with Tailored Shell Thickness,” Langmuir 2008, 24, 1013-1018
32. W.-Y. CHIU, et. al, “Particle Size Distribution and Molecular Size Distribution of Polymers in Soap-Free Emulsion Polymerization of Styrene,” Journal of Applied Polymer Science, Vol. 42, 2787-2793 (1991)
33. T. Yamamoto, et. al, “Growth mechanism of soap-free polymerization of styrene investigated by AFM,” Journal of Colloid and Interface Science, Vol. 297, Issue 1, Pages 112-121, 1 May 2006
34. V. B. Celton, et. al, “Condensation of alkoxysilanes in alcoholic media: II. Oligomerization of aminopropylmethyldiethoxysilane and co-oligomerization with dimethyldiethoxysilane,“ Polym Int; 59: 1273–1281, 2010