| 研究生: |
顏傑 Chieh Yen |
|---|---|
| 論文名稱: | Adaptive Time-Dependent Traffic Signal Control Scheme with Variable Cycle Length Based on Signaling data |
| 指導教授: |
陳惠國
Huey-Kuo Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 依時性交通量指派 、延伸性交通量指派 、雙層規劃模型 、號誌最佳化 、手機信令 |
| 外文關鍵詞: | time-dependent traffic assignment, extended traffic assignment, bi-level programming model, signal optimization, mobile phone signal data |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在傳統的交通量指派當中往往缺乏考慮依時性以及號誌的影響,且在進行交通量指派前所需進行的交通量調查過程中需要花費相當多時間進行調查。為了更加符合實際的交通環境並提升交通量調查之效率,在本研究中不只將導入雙層規劃模型並納入依時性交通量指派以及號誌對道路的影響,更會將手機信令資料進行導入做為一個更加便捷的資料蒐集方法。在旅運需求預測模型中,不同的模組間彼此將會存在有介面,為了消除介面所造成的誤差在本研究中將會採用超級路網的概念將旅次分布以及交通量指派進行整合並視為延伸性交通量指派之問題。
本研究率先採用手機信令資料進行交通量指派之研究。並進行比較其中包括傳統交通分區以及信令資料所採用之網格資料之差異,由於本研究並未執行長時間之預測,且設立傳統交通分區需要進行許多的調查作業,故以網格作為交通分區即足以滿足本研究之需求且能夠提升建構之效益並藉此使交通量指派導入大數據之領域。此外為檢視測試之合理性,本研究將以台北內湖之路網作為研究之場域,並透過指派後之成果與實際道路感測器之資料進行比對。
在測試的結果中可以發現透過號誌控制的調整將可以使總旅行時間下降,並能符合交通量指派之最佳化條件。本研究亦透過Webster formula 與Hooke and Jeeves method去進行號誌週期之調整。測試之結果顯示使用Hooke and Jeeves method 將可以獲得較Webster formula 更佳之結果,但須耗費大量的時間進行計算。最後在道路感測器流量與指派結果之比較分析中,本研究將其分成三種類型,並可分別利用依時性旅次分布與指派問題之特性進行解釋。而其中有部分路段在道路感測器流量與指派結果有極高的相似程度,顯示本研究之模型具有一定之參考價值。
In the traditional traffic assignment process, the time dependency and influences of signals are neglected; thus, it is necessary to conduct a time-consuming traffic survey to obtain accurate traffic data. To represent real-world traffic situations and improve the survey efficiency, we construct a bi-level programming model (in which time-dependent traffic assignment can be implemented under optimal signal conditions) and introduce mobile phone signal data to enhance traffic data collection. In addition to constructing a time-dependent traffic assignment model, we combine trip distribution and traffic assignment and use a supernetwork representation to view this problem as an extended traffic assignment toward the reduction of the interface between travel demand forecasting models.
As a pioneer study in introducing mobile phone signal data as input data in traffic assignment, this study also distinguishes and clarifies the concept of traffic analysis zones, which is used in traditional traffic assignment with grid which is constituted the storage format of mobile phone signal data. Our model does not consider the influence of long-term demand prediction; thus, it is sufficient for us to use grids to conduct traffic assignment. To demonstrate that our idea can be implemented in real-world scenarios, we select Neihu, Taipei, Taiwan, as our testing field and use actual demands obtained from signal data to facilitate comparison with the existing vehicle detector data.
The test results show that by adjusting the signal, the total travel time can be reduced, and the optimal condition can be matched. For improved realism, we also use Webster’s formula and the Hooke and Jeeves method to adjust each cycle length. The results show that the use of the Hooke and Jeeves method improves the result more than Webster’s formula, but renders the calculation process time consuming. By comparing the link flows between the vehicle detector data and our assignment results, we find that it is able to sort these flows into three patterns, owing to the principles of the TD-TDTA model. The results indicate that our assignment resembles that obtained from the vehicle detector data.
Abdulaal, M., LeBlanc, L.J., 1979. Continuous equilibrium network design models. Transportation Research Part B: Methodological 13, 19-32, doi: https://doi.org/10.1016/0191-2615(79)90004-3.
Bar-Gera, H., 2010. Traffic assignment by paired alternative segments. Transportation Research Part B: Methodological 44, 1022-1046, doi: https://doi.org/10.1016/j.trb.2009.11.004.
Chang, C.W., 1997. Computational efficiency of path-based algorithm in solving the dynamic user-optimal route choice model. Master's thesis. National Central University, Taiwan. (張佳偉,1997,路徑變數產生法求解動態交通量指派模型之效率比較,國立中央大學土木工程系碩士論文,中壢。)
Chao, G.S., Friesz, T.L., 1984. Spatial price equilibrium sensitivity analysis. Transportation Research Part B: Methodological 18, 423-440, doi: https://doi.org/10.1016/0191-2615(85)90010-4.
Chen, C., Ma, J., Susilo, Y., Liu, Y., Wang, M., 2016. The promises of big data and small data for travel behavior (aka human mobility) analysis. Transportation Research Part C: Emerging Technologies 68, 285-299, doi: https://doi.org/10.1016/j.trc.2016.04.005.
Chen, H.K., 1999, Dynamic Travel Choice Models: A Variational Inequality Approach. Springer-Verlag, Berlin. (ISBN: 3-540-64953-0)
Chen, H.K., 2009, Transportation Planning and Networks, Tsang Hai, Taichung. (ISBN: 9-866-50755-6)( 陳惠國,2009,運輸規劃與網路,滄海,台中。)
Chen, H.K., 2011, Supernetworks for combined travel choice models, The Open Transportation Journal 5, 92-104
Chen, H.K., Chen, Y.C., 1999, Comparisons of the Frank-Wolfe and Evans Methods for the Doubly Constrained Entropy Distribution/Assignment Problem. EASTS’99, Taipei, Taiwan.
Chen, H.K., Chou, C.Y., Lai, C.T., 2004. A bilevel dynamic signal timing optimization problem, Proceedings of the IEEE International Conference on Networking, Sensing and Control, pp. 856-861, doi: 10.1109/ICNSC.2004.1297059.
Chen, H.K., Hsueh, C.-F., 1998. A model and an algorithm for the dynamic user-optimal route choice problem. Transportation Research Part B: Methodological 32, 219-234, doi: https://doi.org/10.1016/S0191-2615(97)00026-X.
Chen, H.K., Lui, S.H., Chang, C.H., 2002. Dynamic user equilibrium problem with link capacity and first-in-first-out constraints, Proceedings of the IEEE 5th International Conference on Intelligent Transportation Systems, pp. 466-471, doi: https://10.1109/ITSC.2002.1041262.
Chen, L., Hu, T., 2012. Flow equilibrium under dynamic traffic assignment and signal control—an illustration of pretimed and actuated signal control policies. IEEE Transactions on Intelligent Transportation Systems 13, 1266-1276, doi: https://10.1109/TITS.2012.2188392.
Chin, K., Huang, H., Horn, C., Kasanicky, I., Weibel, R., 2019. Inferring fine-grained transport modes from mobile phone cellular signaling data. Computers, Environment and Urban Systems 77, 101348, doi: https://doi.org/10.1016/j.compenvurbsys.2019.101348.
Cho, H.-J., Lo, S.-C., 1999. Solving bilevel network design problem using a linear reaction function without nondegeneracy assumption. Transportation Research Record 1667, 96-106, doi: https://doi.org/10.3141/1667-12.
Chou, C.Y., 1999. Research of Dynamic Optimal Signal - A Application of Bi-Level Programming Model. Master's Thesis, National Central University, Taiwan. (周鄭義,1999,動態號誌時制最佳化之研究-雙層規劃模型之應用,國立中央大學土木工程系碩士論文,中壢。)
Dong, S., Qin, X., Zhang, Y., Shi, Q., Ran, B., 2010. Dynamic network flow modeling based on cell probe data. Proceedings of the 2010 IEEE Intelligent Vehicles Symposium, La Jolla, CA, USA, June 21-24, 2010, pp. 1140-1145, doi: https://doi.org/10.1109/IVS.2010.5548036.
Fiacco, A.V., McCormick. G.P., 1968. Nonlinear Programming: Sequential Unconstrained Minimization Techniques. John Wiley, New York. (ISBN: 0-471-25810-5)
Fisk, C.S., 1984. Game theory and transportation systems modelling. Transportation Research Part B: Methodological 18, 301-313, doi: https://doi.org/10.1016/0191-2615(84)90013-4.
Friesz, T.L., Tobin, R.L., Cho, H.-J., Mehta, N.J., 1990. Sensitivity analysis based heuristic algorithms for mathematical programs with variational inequality constraints. Mathematical Programming 48, 265-284, doi: https://doi.org/10.1007/BF01582259.
García-Ródenas, R., López-García, M.L., Sánchez-Rico, M.T., 2017. An approach to dynamical classification of daily traffic patterns. Computer-Aided Civil and Infrastructure Engineering 32, 191-212.
Graybill, F.A., 1983. Matrices with Applications in Statistics. 2nd edition. Wadsworth Publishing Company, Belmont. (ISBN: 0-534-98038-4)
Han, K., Sun, Y., Liu, H., Friesz, T.L., Yao, T., 2015. A bi-level model of dynamic traffic signal control with continuum approximation. Transportation Research Part C: Emerging Technologies 55, 409-431, doi: https://doi.org/10.1016/j.trc.2015.03.037.
Jafari, E., Gemar, M.D., Juri, N.R., Duthie, J., 2015. Investigation of centroid connector placement for advanced traffic assignment models with added network detail. Transportation Research Record 2498, 19-26, doi: https://doi.org/10.3141/2498-03.
Jayakrishnan, R., Tsai, W.K., Prashker, Joseph, N. and Rajadhyaksha, S., 1994. A faster path-based algorithm for traffic assignment. UC Berkeley: University of California Transportation Center. <https://escholarship.org/uc/item/2hf4541x> (accessed 22.03.23.).
Li, Z., Shahidehpour, M., Bahramirad, S., Khodaei, A., 2017. Optimizing traffic signal settings in smart cities. IEEE Transactions on Smart Grid 8, 2382-2393, doi: 10.1109/TSG.2016.2526032.
Liu, W.-L., Gong, Y.-J., Chen, W.-N., Zhang, J., Dou, Z., 2021. An agile vehicle-based dynamic user equilibrium scheme for urban traffic signal control. IET Intelligent Transport Systems 15, 619-634, doi: https://doi.org/10.1049/itr2.12049.
Lord, D., Persaud, B.N., 2004. Estimating the safety performance of urban road transportation networks. Accident Analysis & Prevention 36, 609-620, doi: https://doi.org/10.1016/S0001-4575(03)00069-1.
Mounce, R., Carey, M., 2014. On the convergence of the method of successive averages for calculating equilibrium in traffic networks. Transportation Science 49, 535-542, doi: https://doi.org/10.1287/trsc.2014.0517.
Perakis, G., 2004. User equilibrium versus System Optimum in Transportation when Costs are Non-separable and Asymmetric. The Fifth Triennial Symposium on Transportation Analysis, Le Gosier, Guadeloupe, France, June 13-18, 2004.
Sheffi, Y., 1985. Urban transportation networks: Equilibrium analysis with mathematical programming methods. Prentice-Hall, New Jersey. (ISBN: 0-139-39729-9)
Tan, H.-N., Gershwin, S.B., Athans, M., 1979. Hybrid Optimization Urban Traffic Networks. United States. Department of Transportation. Research and Special Programs Administration. <https://rosap.ntl.bts.gov/view/dot/10369> (accessed 22.06.13.).
Tobin, R.L., 1986. Sensitivity analysis for variational inequalities, Journal of Optimization Theory and Applications 48, 191-204, doi: https://doi.org/10.1007/BF00938597.
Tobin, R.L., Friesz, T.L., 1988. Sensitivity analysis for equilibrium network flow. Transportation Science 22, 242-250, doi: https://doi.org/10.1287/trsc.22.4.242.
Van Vliet, D., 1987. The frank-wolfe algorithm for equilibrium traffic assignment viewed as a variational inequality. Transportation Research Part B: Methodological 21, 87-89, doi: https://doi.org/10.1016/0191-2615(87)90024-5.
Wardrop, J.G., 1952. Road paper. Some theoretical aspects of road traffic research. Proceedings of the Institution of Civil Engineers 1, 325-362, doi: https://doi.org/ 10.1680/ipeds.1952.11259.
Wei, H., Zheng, G., Gayah, V.V., Li, Z.J., 2019. A survey on traffic signal control methods. ArXiv abs/1904.08117.
Wu, W., Cheu, E.Y., Feng, Y., Le, D.N., Yap, G.-E., Li, X., 2013. Studying intercity travels and traffic using cellular network data.
Xie, X.-F., Wang, Z.J., 2019. Combined traffic control and route choice optimization for traffic networks with disruptive changes. Transportmetrica B: Transport Dynamics 7, 814-833, doi: https://doi.org/10.1080/21680566.2018.1517059.
Zhuang, Y. H., 2006. First-in-first-out Dynamic Travel Time Functions and Origin-based Tarffic Assignment Algorithm. Master's Thesis, National Central University, Taiwan. (莊英鴻,2006,先進先出動態旅行時間函數以及起點基礎之交通量指派演算法之研究,國立中央大學土木工程系碩士論文,中壢。)