跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林呈剛
Cheng-Gang Lin
論文名稱: 通道選擇濾波器之探討
Discussion to Channel Drop Filters
指導教授: 欒丕綱
Pi-Gang Luan
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 94
語文別: 中文
論文頁數: 61
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文是利用平面波展開法、多重散射法以及耦合模態理論,研究由缺陷
    態所組成的濾波器結構,目標是能對窄頻的波段做濾波。我們根據耦合模態理論
    (coupled-mode theory)分析此元件的特性,發現實際模擬結果與理論的配合不是
    很理想,但是理論對穿透率的預測整體趨勢與模擬結果相符。雖然理論預測與實
    際模擬的結果有出入,但理論提供了設計時所必須考慮的因素,在定性上仍有價
    值。實際可行的結構可根據模擬結果做多次的調整而得到。由於是使用光子晶體
    為基本結構設計而成,因此原則上可以積體化。相信以後在積體光學方面會有相
    當大的發揮空間。


    In this thesis we present a general theoretical analysis of channel drop filter
    structures composed of two photonic crystal waveguides and a resonator system. The
    device is designed to be a narrow band pass filter. Plane wave expansion method is
    used for calculating the band gap of the photonic crystal, whereas the multiple
    scattering method is employed to obtain the specific field pattern and the
    eigenfrequencies of the defect modes for the resonator system. On the other hand,
    coupled-mode theory is applied to analyze qualitatively the transmission
    characteristics of the filter. Although the agreement between the numerical results
    obtained directly from multiple scattering method and the ideal results from
    coupled-mode theory are not good enough, the coupled-mode theory still provides the
    key factors that must be considered in a practical design. The practical filter device
    can be constructed according to the optimal design. Since the filter is based on
    photonic crystals, thus it can be integrated with other components. We do believe the
    filter will play a role in the future in the integrated optics.

    摘要………………………………………………………………………Ⅰ Abstract…………………………………………………………………Ⅱ 致謝………………………………………………………………………Ⅲ 目錄………………………………………………………………………Ⅳ 圖索引……………………………………………………………………Ⅵ 第一章 序論………………………………………………………………1 第二章 光子晶體的理論與分析 ………………………………………..4 2.1 光子晶體的詳細介紹…………………………………………...4 2.2 平面波展開法應用在二維光子晶體…………………………...7 2.3 多重散射法……………………………………………………..13 2.4 計算多重散射法的能流及定義穿透率………………………..21 2.5 通道選擇濾波器的架構………………………………………...24 第三章 波導與共振腔…………………………………………………...25 3.1 波導……………………………………………………………..25 3.2 共振腔…………………………………………………………..28 3.3 共振腔的耦合…………………………………………………..30 第四章 通道選擇濾波器的理論架構…………………………………...33 4.1 單一共振腔的濾波器…………………………………………..33 4.2 單一共振腔支援雙模態………………………………………..38 4.3 兩個共振腔各自支援單一模態………………………………...42 第五章 模擬結果與討論………………………………………………...46 5.1 單一共振腔的濾波器…………………………………………..46 5.2 雙共振腔的濾波器……………………………………………..54 V 第六章 結論……………………………………………………………...57 參考資料………………………………………………………………….60

    [1] Jan Per
    􀀆
    ina, “Quqntum Statistics of Linear and Nonlinear Optical Phenomena”,
    Kluwer Academic Publishers, 1991
    [2] Sajeev john, “Strong localization of photons in certain disordered dielectric
    superlattices”, Physical Review Letters, 1987
    [3] Eli Yablonovitch, “Full vector wave calculation of photonic band structures in
    face-centered-cubic dielectric media”, Physical Review Letters, 1987
    [4] C.luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, Phys. Rev.B65,
    201104(R) (2002); M.Notomi, ibid. 62, 10696(2000)
    [5] L. S. Chen, C. H. Kuo, Z. Ye, “Acoustic miaging and collimating by slabs of sonic
    crystals made from arrays of rigid cylinders in air”, Applied Physics Letters,
    (2004)
    [6] 欒丕綱, 陳啟昌, “光子晶體-從蝴蝶翅膀到奈米光子學”, 五南出版社, 台灣,
    2005
    [7] Charles Kittel, “Introduction to Solid State Physics”, Wiley&Sons, (1996)
    [8] George B. Arfken, Hans J. Weber, “Mathematical Methods for Physicists”,
    ACADEMIC, (1966)
    [9] M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, “Lightwave propagation
    through a 120∘sharply bent single-line-defect photonic crystal waveguide,”Appl.
    Phys. Lett. 76, 952(2000)
    [10] A. Chutinan, M. Okano, S. Noda, “Wider bandwidth with high transmission
    through wavguide bends in two-dimensional photonic crystal slabs,”Appl. Phys.
    Lett. 80, 1698
    [11] Marion Thornton, “Classiacal dynamics ”, Harcourt College, (1995)
    [12] H. A. Haus, Shanhui Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop
    filters in photonic crystals”, optics express, (1998)
    61
    [13] C. Manolatou, M. J. Khan, Shanhui Fan, Pierre R. Villeneuve, H. A. Haus,
    “Coupling of Modes Analysis of Resonant Channel Add-Drop Filters”, IEEE,
    (1999)
    [14] S. Fan, P. R. Villeneuve, J. D. Joannopoulos and H. A. Haus, “Channel drop
    tunneling through localized states,”Phys. Rev. Lett.80, 960 (1998).
    [15] H. A. Haus and Y. Lai, “Narrow-band optical channel-dropping filter,” J.
    Lightwave Technol.10, 57 (1992).
    [16] H. A. Haus and Y. Lai, J. Lightwave Technol. 10, 57(1992).
    [17] Zhi-Yuan Li, Hong-Yi Sang, and Lan-Lan Lin, Kai-Ming Ho,
    “Evanescent-wave-assised wideband continuous tenability in photonic crystal
    channel-drop filters”, The American Physical Society, (2005)
    [18] Dongsoo Park, Sangin Kim, Ikmo Park, and Hanjo Lim, “Higher Order Optical
    Resonant Filters Based on Coupled Defect Resonators in Photonic Crystals”, IEEE,
    (2005)
    [19] Ziyang Zhang, and Min Qiu, “Coupled-mode analysis of a resonant channel drop
    filter using waveguides with mirror boundaries”, Optical Society of America, (2006)
    [20] Pierre R. Villeneuve, Shanhui Fan, and J. D. Joannopoulos, “Microcavities in
    photonic crystals: Mode symmetry, tunability, and coupling efficiency”, The
    American Physical Society, (1996)
    [21] Ahmed Sharkawy, Dennis W. Prather and Shouyuan Shi, “Photonic crystal
    multi-channel drop filter and hetero-structure beam splitter”, Proc. SPIE, (2001)
    [22] Wang Zhi, Ren Guobin, Lou Shuqin, and Jian Shuisheng, “Supercell
    lattice method for photonic crystal fibers”, OPTICS EXPRESS, (2003)

    QR CODE
    :::