| 研究生: |
吳承翰 Cheng-Han Wu |
|---|---|
| 論文名稱: |
抗阻塞微珠過濾裝置應用於大量收集血液中的循環腫瘤細胞 Anti-Clogging Hemofiltration Device with Zwitterionized Microspheres for Mass Collection of Circulating Tumor Cells |
| 指導教授: |
黃俊仁
Chun-Jen Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生醫科學與工程學系 Department of Biomedical Sciences and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 血液過濾裝置 、磺基甜菜鹼矽烷 、循環腫瘤細胞 、抗凝血 |
| 外文關鍵詞: | hemofiltration, sulfobetaine silane, anti-clotting, circulating tumor cells |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
循環腫瘤細胞在癌症臨床應用上被視為原位癌診斷的重要生物標記,隨著液態活檢與細胞分離技術的發展,循環腫瘤細胞已應用於腫瘤治療的即時監測以及精準醫療的預後與個人化的癌症治療。然而,極稀少的循環腫瘤細胞一直都是臨床應用發展受到限制的主因,儘管近年來循環腫瘤細胞分離技術已逐漸成熟,但仍以少量血液中分離檢測作為醫療診斷為主,尚無法真正地收集大量循環腫瘤細胞為癌症患者進行藥物篩選等個人化治療。因此,本研究建立一種血液過濾裝置,使用可避免血栓形成的一種雙離子材料,磺基甜菜鹼矽烷 (Sulfobetaine silane, SBSi),修飾於二氧化矽微珠上並填充於管柱內,經由微珠間產生的空隙大小分離並收集大量血液中的循環腫瘤細胞,除了能夠降低癌症轉移的機率,還能夠大量收集循環腫瘤細胞提供後續診斷與個人化的治療。首先本研究用UV-Vis證實SBSi改質的微珠能有效地抵抗紅血球的貼附,接著對管柱過濾的各項變因進行測試,包含微珠尺寸,流速、填充床高度、管柱截面積以及沖提時間等,設計出對5×105個人類直腸癌細胞(HCT116)有著高達90%的移除率以及對血球細胞有著低滯留率的血液過濾條件,爾後利用細胞密度分離液將收集的HCT116細胞與微珠分離並測試密度分離法對細胞的回收率。另外也調查了長時間的過濾對HCT116細胞的生存率影響,以及成功地模擬了在高達2000毫升的循環過濾血量中收集並回收HCT116細胞,而大量收集的HCT116細胞能用於快速的細胞增殖。經由實驗結果證明了血液過濾裝置擁有大量移除並收集血液中的循環腫瘤細胞的能力,足以解決循環腫瘤細胞數量稀少的問題,具有將CTCs在癌症臨床的應用進一步發展並推向精準醫療的潛力。
Clinical applications of circulating tumor cells (CTCs) as a cancer biomarker are considered as a useful index to provide valuable information, such as cancer detection, prognosis prediction, cancer drugs screening and monitoring the outcomes of systemic treatments. In recent decades, more and more studies developed reliable devices capturing and releasing CTCs from the blood of the cancer patients based on the physical and biological property of CTCs. However, the extremely rare CTCs still limited the development of precision medicine. Herein, the aim of the thesis is to develop a hemofiltration device by using silica microspheres packed in the column to collect a large number of CTCs from the blood. The silica microspheres were modified with sulfobetaine silane (SBSi) to endow anti-clotting property. The size of pores between microspheres was selected to selectively restrain CTCs which are larger than blood cells. In this study, we confirmed the antifouling of the red blood cells (RBCs) by UV-Vis, and examined various variables of column filtration, including the size of microspheres, flow rate, height of filter bed, column cross-section area, and elution times for observe the change of human colorectal cancer cells (HCT116) removal rate and blood cells retention rate, then designed the optimal condition to attain 90% removal rate with 5×105 HCT116 and low blood cells retention rate. The collected cancer cells were then harvested from the microspheres by using a cell density separation solution, and the cells recovery rate also had be investigated. Moreover, the cell viability had also be proven not affected by the flow rate we use. Finally, we demo 2000 mL blood with cancer cell flow through the hemofiltration device and successful recover the alive cancer cells. The experimental results showed that the hemofiltration device has the ability to collect mass cancer cells from the blood, and then the collected cells can be harvested and cultured in vitro. The potential of hemofiltration device in clinical application is expected to solve the problem that CTCs are extremely rare for development of precision medicine.
1. Seyfried, T.N. and L.C. Huysentruyt, On the origin of cancer metastasis. Critical reviews in oncogenesis, 2013. 18(1-2): p. 43.
2. Gomez-Cuadrado, L., et al., Mouse models of metastasis: progress and prospects. Disease models & mechanisms, 2017. 10(9): p. 1061-1074.
3. Masuda, T., et al., Clinical and biological significance of circulating tumor cells in cancer. Molecular oncology, 2016. 10(3): p. 408-417.
4. Yap, T.A., et al., Circulating tumor cells: a multifunctional biomarker. 2014, AACR.
5. Fabisiewicz, A. and E. Grzybowska, CTC clusters in cancer progression and metastasis. Medical oncology, 2017. 34(1): p. 12.
6. Aceto, N., et al., Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell, 2014. 158(5): p. 1110-1122.
7. Hong, Y., F. Fang, and Q. Zhang, Circulating tumor cell clusters: What we know and what we expect. International journal of oncology, 2016. 49(6): p. 2206-2216.
8. Qi, Z.-H., et al., The significance of liquid biopsy in pancreatic cancer. Journal of cancer, 2018. 9(18): p. 3417.
9. Alix-Panabières, C. and K. Pantel, Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer discovery, 2016. 6(5): p. 479-491.
10. Shigeyasu, K., et al., Emerging role of microRNAs as liquid biopsy biomarkers in gastrointestinal cancers. Clinical cancer research, 2017. 23(10): p. 2391-2399.
11. Cristofanilli, M., et al., Circulating tumor cells, disease progression, and survival in metastatic breast cancer. New england journal of medicine, 2004. 351(8): p. 781-791.
12. Miller, M.C., G.V. Doyle, and L.W. Terstappen, Significance of circulating tumor cells detected by the CellSearch system in patients with metastatic breast colorectal and prostate cancer. Journal of oncology, 2010. 2010.
13. Guo, T., et al., Culture of circulating tumor cells—holy grail and big challenge. International journal of cancer and clinical research, 2016. 3: p. 065.
14. Coumans, F., G. van Dalum, and L.W.M.M. Terstappen, CTC technologies and tools. Cytometry part A, 2018. 93(12): p. 1197-1201.
15. Bruil, A., et al., The mechanisms of leukocyte removal by filtration. Transfusion medicine reviews, 1995. 9(2): p. 145-166.
16. Prinyakupt, J. and C. Pluempitiwiriyawej, Segmentation of white blood cells and comparison of cell morphology by linear and naïve Bayes classifiers. Biomedical engineering online, 2015. 14(1): p. 63.
17. Gkountela, S., et al., Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell, 2019. 176(1-2): p. 98-112. e14.
18. Hosokawa, M., et al., Size-selective microcavity array for rapid and efficient detection of circulating tumor cells. Analytical chemistry, 2010. 82(15): p. 6629-6635.
19. Park, E.S., et al., Continuous flow deformability‐based separation of circulating tumor cells using microfluidic ratchets. Small, 2016. 12(14): p. 1909-1919.
20. Chen, H., et al., Highly-sensitive capture of circulating tumor cells using micro-ellipse filters. Scientific reports, 2017. 7(1): p. 610.
21. Morgan, T.M., P.H. Lange, and R.L. Vessella, Detection and characterization of circulating and disseminated prostate cancer cells. Front biosci, 2007. 12: p. 3000-3009.
22. Huang, Q., et al., Gelatin nanoparticle-coated silicon beads for density-selective capture and release of heterogeneous circulating tumor cells with high purity. Theranostics, 2018. 8(6): p. 1624.
23. Gascoyne, P. and S. Shim, Isolation of circulating tumor cells by dielectrophoresis. Cancers, 2014. 6(1): p. 545-579.
24. Shim, S., et al., Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems. Biomicrofluidics, 2013. 7(1): p. 011808.
25. Man, Y., Q. Wang, and W. Kemmner, Currently used markers for CTC isolation-advantages, limitations and impact on cancer prognosis. Journal of clinical & experimental pathology, 2011. 1(102): p. 2161-0681.1000102.
26. Shao, H., J. Chung, and D. Issadore, Diagnostic technologies for circulating tumour cells and exosomes. Bioscience reports, 2016. 36(1).
27. Bai, L., et al., Peptide-based isolation of circulating tumor cells by magnetic nanoparticles. Journal of materials chemistry B, 2014. 2(26): p. 4080-4088.
28. KC, T.B., et al., Wash-free and selective imaging of epithelial cell adhesion molecule (EpCAM) expressing cells with fluorogenic peptide ligands. Biochemical and biophysical research communications, 2018. 500(2): p. 283-287.
29. Truini, A., et al., Clinical applications of circulating tumor cells in lung cancer patients by CellSearch system. Frontiers in oncology, 2014. 4: p. 242.
30. Shen, Z., A. Wu, and X. Chen, Current detection technologies for circulating tumor cells. Chemical society reviews, 2017. 46(8): p. 2038-2056.
31. Gorges, T.M., et al., Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC cancer, 2012. 12(1): p. 178.
32. Gertler, R., et al., Detection of circulating tumor cells in blood using an optimized density gradient centrifugation, in Molecular staging of cancer. 2003, Springer. p. 149-155.
33. Hyun, K.-A. and H.-I. Jung, Advances and critical concerns with the microfluidic enrichments of circulating tumor cells. Lab on a chip, 2014. 14(1): p. 45-56.
34. Wong, K.H., et al., Anti-thrombotic strategies for microfluidic blood processing. Lab on a chip, 2018. 18(15): p. 2146-2155.
35. Bankó, P., et al., Technologies for circulating tumor cell separation from whole blood. Journal of hematology & oncology, 2019. 12(1): p. 48.
36. Ozkumur, E., et al., Inertial focusing for tumor antigen–dependent and–independent sorting of rare circulating tumor cells. Science translational medicine, 2013. 5(179): p. 179ra47-179ra47.
37. Kwak, D., Y. Wu, and T.A. Horbett, Fibrinogen and von Willebrand's factor adsorption are both required for platelet adhesion from sheared suspensions to polyethylene preadsorbed with blood plasma. Journal of biomedical materials research part A, 2005. 74(1): p. 69-83.
38. Ehret, W., et al., Use of anticoagulants in diagnostic laboratory investigations and stability of blood, plasma and serum samples. World health organization, Geneva, Switzerland, 2002.
39. Zhang, Z., et al., Polybetaine modification of PDMS microfluidic devices to resist thrombus formation in whole blood. Lab on a chip, 2013. 13(10): p. 1963-1968.
40. Yoon, H.J., et al., Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nature nanotechnology, 2013. 8(10): p. 735.
41. Bose, S., S.F. Robertson, and A. Bandyopadhyay, Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta biomaterialia, 2018. 66: p. 6-22.
42. Nemani, S.K., et al., Surface modification of polymers: Methods and applications. Advanced materials interfaces, 2018. 5(24): p. 1801247.
43. Fox, K.E., et al., Surface modification of medical devices at nanoscale—recent development and translational perspectives, in Biomaterials in translational medicine. 2019, Elsevier. p. 163-189.
44. Mallakpour, S. and M. Madani, A review of current coupling agents for modification of metal oxide nanoparticles. Progress in organic coatings, 2015. 86: p. 194-207.
45. Gad, M.M., et al., Effect of zirconium oxide nanoparticles addition on the optical and tensile properties of polymethyl methacrylate denture base material. International journal of nanomedicine, 2018. 13: p. 283.
46. He, M., et al., Zwitterionic materials for antifouling membrane surface construction. Acta biomaterialia, 2016. 40: p. 142-152.
47. Sun, Y., et al., Surface modification of silicon wafer by grafting zwitterionic polymers to improve its antifouling property. Applied surface science, 2017. 419: p. 642-649.
48. Yeh, S.-B., et al., Modification of silicone elastomer with zwitterionic silane for durable antifouling properties. Langmuir, 2014. 30(38): p. 11386-11393.
49. Lambros, M.B., et al., Single-cell analyses of prostate cancer liquid biopsies acquired by apheresis. Clinical cancer research, 2018. 24(22): p. 5635-5644.
50. Kim, T.H., et al., A temporary indwelling intravascular aphaeretic system for in vivo enrichment of circulating tumor cells. Nature communications, 2019. 10(1): p. 1478.
51. Mollahosseini, A., A. Abdelrasoul, and A. Shoker, Latest advances in zwitterionic structures modified dialysis membranes. Materials today chemistry, 2020. 15: p. 100227.
52. Huang, K.-T., S.-B. Yeh, and C.-J. Huang, Surface modification for superhydrophilicity and underwater superoleophobicity: applications in antifog, underwater self-cleaning, and oil–water separation. ACS applied materials & interfaces, 2015. 7(38): p. 21021-21029.
53. Estephan, Z.G., J.A. Jaber, and J.B. Schlenoff, Zwitterion-stabilized silica nanoparticles: toward nonstick nano. Langmuir, 2010. 26(22): p. 16884-16889.
54. Nonoyama, A., et al., Hypochromicity in red blood cells: an experimental and theoretical investigation. Biomedical optics express, 2011. 2(8): p. 2126-2143.
55. Xiao, M., L.N. Reddi, and S.L. Steinberg, Variation of water retention characteristics due to particle rearrangement under zero gravity. International journal of geomechanics, 2009. 9(4): p. 179-186.
56. Graton, L.C. and H. Fraser, Systematic packing of spheres: with particular relation to porosity and permeability. The Journal of geology, 1935. 43(8, Part 1): p. 785-909.
57. Tomaiuolo, G., et al., Red blood cell deformation in microconfined flow. Soft matter, 2009. 5(19): p. 3736-3740.
58. Tsai, Y.-L., et al., Scalable multilayer cell collector to capture circulating tumor cells with an unlimited volume capacity. ACS biomaterials science & engineering, 2019. 5(6): p. 2725-2731.
59. Radley, G., et al., Mechanical shear stress and leukocyte phenotype and function: implications for ventricular assist device development and use. The international journal of artificial organs, 2019. 42(3): p. 133-142.
60. Takeishi, N. and Y. Imai, Capture of microparticles by bolus flow of red blood cells in capillaries. Scientific reports, 2017. 7(1): p. 5381.
61. Moazzam, F., et al., The leukocyte response to fluid stress. Proceedings of the national academy of sciences, 1997. 94(10): p. 5338-5343.
62. Tsai, W.-S., et al., Circulating tumor cell count correlates with colorectal neoplasm progression and is a prognostic marker for distant metastasis in non-metastatic patients. Scientific reports, 2016. 6: p. 24517.