跳到主要內容

簡易檢索 / 詳目顯示

研究生: 駱威諭
Wei-Yu Lo
論文名稱: 用光電化學方式對n型砷化鎵為基材之金半場效電晶體之特性改良
Characteristic improvement of MESFET with photoelectrochemical in n-GaAs substrate
指導教授: 李清庭
Ching-Ting Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 91
語文別: 中文
論文頁數: 44
中文關鍵詞: 光電化學
外文關鍵詞: photoelectrochemical
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,具有直接能隙之III-V族半導體如砷化鎵因具有穩定性與均一性之特性,已成為元件的主流,而砷化鎵主要以金半場效電晶體元件為主,由於砷化鎵表面能態問題,造成汲極的電流減少,故本論文主要利用光電化學(photoelectrochemistry, PEC)之技術針對金半場效電晶體元件的源-閘極及閘-汲極間的n型砷化鎵表面直接進行氧化,期望能利用氧化層達到有效降低元件之漏電流以及提高元件之崩潰電壓。
    藉由製程實驗,元件的直流特性量測方面,元件尺寸其閘極長度為1.25um時,從IDS-VDS特性曲線中,發現元件在VDS=3.6V,VGS=0.76V,可得到最大互導值為213mS/mm,而元件的夾止電壓為-2.5V,閘極到源極的崩潰電壓為-11.5V;元件尺寸其閘極長度為5um時,從IDS-VDS特性曲線中,發現元件在VDS=3.6V,VGS=0.1V,可得到最大互導值為98.6mS/mm,而元件的夾止電壓為-2.5V,閘極到源極的崩潰電壓為-11V。
    用PEC方式成長氧化層於元件上,做為鈍化層,在閘極與源極之間的漏電流有變小且崩潰電壓已達到-39.4V,最後,對氧化層做熱處理,隨著熱處理溫度的提升相對地漏電流也繼續降低且崩潰電壓降至-41V。


    第一章 緒論 1 1-1 背景及研究動機 1 1-2 研究目的 2 第二章 砷化鎵氧化原理及相關量測 4 2-1 砷化鎵氧化之原理 4 2-2 實驗架構 5 2-3 實驗內容與相關量測 6 第三章 n型砷化鎵金半場效電晶體之原理與製作及量測 9 3-1 金半場效電晶體原理 9 3-2 元件製作 9 3-2-1 高臺蝕刻 9 3-2-2 汲極與源極歐姆接觸之製作 11 3-2-3 閘極蕭特基接觸之製作 12 3-2-4 用PEC成長氧化層: 13 3-2-5 元件完成 14 3-3 元件之電特性量測 14 3-3-1 特徵接觸電阻的量測 14 3-3-2 場效電晶體電流-電壓特性曲線之量測 15 3-3-2-1 閘極長度為1.25 um和閘極寬度為75 um 15 3-3-2-2 閘極長度為5 um和閘極寬度為300 um 16 3-3-3 PEC成長氧化層後之元件特性曲線 17 3-3-4 元件做熱處理後之特性曲線 18 第四章 結論 19 參考文獻 21

    1. R. Williams, “Modern GaAs Processing Methods,” ch.1 Boston London, Artech House, 1990.
    2. H. Kressel and J. K. Butler, “Semiconductor Laser and Heterojunction LEDs,” Academic, New York, 1977.
    3. A. C. Han, M. Wojtowicz, T. R. Block, X. Zhang, T. P. Chin, A. Cavus, A. Oki, and D. C. Streit, “Characterization of GaAs/AlGaAs heterojunction bipolar-transistor devices using photoreflectance and photoluminescence,” Journal of Applied Physics, Vol. 86, p.6160, 1999.
    4. D. C. Herbert, “Extended velocity overshoot in GaAs HBT,” Semiconductor Science and Technology, Vol. 10, p.682, 1995.
    5. R. Singh and C. M. Snowden, “A charge-control HEMT model incorporating deep-level effects,” Solid-State Electronics, Vol. 43, p.473, 1999.
    6. S. Takamiya, M. Harayama, T. Sugimura, T. Tsuzuku, T. Taya, K. Iiyama and S. Hashimoto, “Reverse currents of schottky gates of III-V MESFET/HEMTs-field-emission and tunnel currents,” Solid-State Electronics, Vol. 42, p.447, 1998.
    7. M. G. Kang, S. H. Sa, H. H. Park, K. S. Suh, and K. H. Oh, “The characterization of etched GaAs surface with HCl or H3PO4 solutions,” Thin Solid Films, Vol. 308, p.634, 1997.
    8. L. Majumdar and P. Chattopadhyay, “Effect of interface states on the DC characteristics of short-channel metal-semiconductor field-effect transistor,” Applied Surface Science, Vol. 119, p.369, 1997.
    9. R. Khare, D. B. Young, G. L. Snider, and E. L. Hu, “Effect of band structure on etch-stop layer in the photoelectrochemical etching of GaAs/AlGaAs semiconductor structures,” Applied Physics Letters, Vol. 62, p.1809, 1993.
    10. E. H. Chen, D. T. Mclnturff, T. P. Chin, M. R. Melloch, and J. M. Woodall, “Use of annealed low-temperature grown GaAs as a selective photoetch-stop layer,” Applied Physics Letters, Vol. 68, p.1678, 1996.
    11. H. J. Yoon, M. H. Choi, and I. S. Park, “The study of native on chemically etched GaAs(100) surface,” Journal of the Electrochemical Society, Vol. 139, p.3229, 1992.
    12. L. H. Peng, C. W. Chuang, J. K. Ho, C. N. Huang, and C. Y. Chen, “Deep ultraviolet enhanced wet chemical etching of gallium nitride,” Applied Physics Letters, Vol. 72, p.939, 1998.
    13. G. C. Tisone and A. W. Johnson, “Laser-controlled etching of chromium-doped (100) GaAs,” Applied Physics Letters, Vol. 42, p.530, 1993.
    14. R. Khare, E. L. Hu, J. J. Brown, and M. A. Mellendes, “Micromachining in III-V semiconductors using wet photoelectrochemical etching,” Journal of the Vacuum Science and Technology B, Vol. 11, p.2497, 1993.
    15. E. H. Nicollian and J. R. Brews, “MOS (Metal Oxide Semiconductor) Physics and Technology,” p.738.

    QR CODE
    :::