| 研究生: |
楊賀宇 Ho-Yu Yang |
|---|---|
| 論文名稱: |
原子層沉積法沉積二氧化鉿於波導模態共振結構之研究 The study on deposition of HfO2 on Guided-mode Resonance structure by Atomic Layer Deposition |
| 指導教授: |
郭倩丞
Chien-Cheng Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 原子層沉積 、波導 、波導模態共振 |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來半導體產業的快速發展對線寬的要求越來越小,原子層沉積法因具有極佳的均勻性和保形性,應用領域也越來越廣泛。
本論文利用稜鏡浸潤式干涉微影系統製作出週期為0.405 μm光柵波導結構,並成功利用電將輔助原子層沉積法在製程溫度60 ℃下,沉積0.03 μm HfO2薄膜於光阻光柵結構上。
利用Rsoft DiffracMOD分析二氧化鉿(HfO2)薄膜於波導模態共振結構之光譜變化。在加入HfO2薄膜後,光柵層的等效折射率增加,使共振點的轉移至光柵層中,TE模態共振點的消光比從原本的3727增加到36943。
並藉由TE及TM共振點位移量的不同,模擬出多模態非偏振濾波效果,同一階模態共振點的TE及TM波長差僅小於0.5 nm ,穿透率皆小於1%,在線寬表現上FWHM皆低於0.02 μm。
In recent years, the rapid development of the semiconductor industry require as small as for line width. Because of its excellent uniformity and shape retention, Atomic Layer Deposition technology has developed rapidly and has more and more applications.
In this thesis, a grating waveguide structure with a period of 0.405 μm was fabricated using the immersion interference lithography system, and a 0.03 μm HfO2 film was deposited on the photoresist grating structure by using the Plasma Enhanced Atomic Layer Deposition method at a process temperature of 60 ℃.
Use Rsoft DiffracMOD to analyze the spectral changes of the hafnium dioxide (HfO2) film in the waveguide mode resonance structure. After adding the HfO2 film, the equivalent refractive index of the grating layer increases, so that the resonance point is transferred to the grating layer, and the extinction ratio of the TE mode resonance point is increased from 3727 to 36943.
And by the difference of TE and TM resonance point displacements, the multi-modal non-polarization filtering effect is simulated. The TE and TM wavelength difference of the same order modal resonance point is only less than 0.5 nm, the transmittance is less than 1%, and the line width In terms of performance, the FWHM is lower than 0.02 μm.
[1] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. London 18, 269–275 (1902).
[2] A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965).
[3] M. Sarrazin and J. P. Vigneron, “Bounded modes to the rescue of optical transmission,” Europhys. News 3, 27–31 (2007).
[4] R. R. Boye, R. W. Ziolkowski, R. K. Kostuk, “Resonant waveguide-grating switching device with nonlinear optical material,” Appl. Opt. 38, 5181–5185 (1999).
[5] J. H. Lin, Y. C. Huang, N. D. Lai, H. C. Kan, and C. C. Hsu, “Optical modulation of guided mode resonance in the waveguide grating structure incorporated with azo-doped-poly(methylmethacrylate) cladding layer,” Opt. Express 20(1), 377–384 (2012).
[6] J. H. Lin, J. H. Huang, H. C. Kan, and C. C. Hsu, “Optical tuning of guided mode resonance in an azo-copolymer waveguide grating structure inscribed with a surface relief grating,” Adv. Device Mater. 1(3), 74–79 (2015).
[7] Y. Nazirizadeh, F. Oertzen, T. Karrock, J. Greve, and M. Gerken, “Enhanced sensitivity of photonic crystal slab transducers by oblique-angle layer deposition,” Opt. Express 21(16), 18661–18670 (2013).
[8] S. Zhang, Y. Wang, S. Wang, and W. Zheng, “Wavelength-tunable perfect absorber based on guided-mode resonances,” Appl. Opt. 55(12), 3176–3181 (2016).
[9] D. Rosenblatt, A. Sharon. and A. A. Friesem, “Resonant grating waveguide structures,” in IEEE Journal of Quant. Electronics, vol. 33, no. 11, pp. 2038–2059, (1997).
[10] S. Tibuleac, R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14, 1617–1626 (1997).
[11] Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett. 23, 1556–1558 (1998).
[12] D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37, 2634–2646 (1998).
[13] D. W. Peters, R. R. Boye, J. R. Wendt, R. A. Kellogg, S. A. Kemme, T. R. Carter, and S. Samora, “Demonstration of polarization-independent resonant subwavelength grating filter arrays,” Opt. Lett. 35(19), 3201–3203 (2010).
[14] T. Alasaarela, D. Zheng, L. Huang, A. Priimagi, B. Bai, A. Tervonen, S. Honkanen, M. Kuittinen, and J. Turunen, “Single-layer one-dimensional nonpolarizing guided-mode resonance filters under normal incidence,” Opt. Lett. 36, 2411–2413 (2011).
[15] Y. Y. Li, C. Hu, Y. C. Wu, J. J. Chen, and H. H. Feng, “Numerical investigation of one-dimensional nonpolarizing guided-mode resonance gratings with conformal dielectric films,” Opt. Express 21, 345-357 (2013).
[16] M. R. Saleem, R. Ali, S. Honkanen and J. Turunen, “Effect of waveguide thickness layer on spectral resonance of a Guided Mode Resonance Filter,” International Bhurban Conference on Applied Sciences & Technology (IEEE, 2014), pp. 39-43.
[17] L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[18] L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. 40, 553–573 (1993).
[19] R. R. Boye and R. K. Kostuk, “Investigation of the effect of finite grating size on the performance of guided-mode resonance filters,” Appl. Opt. 39, 3649–3653 (2000).
[20] K. Knop, “Rigorous diffraction theory for transmission phase grating with deep rectangular grooves,” J. Opt. Soc. Am. 68 120 (1978).
[21] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71 811 (1981).
[22] S. S. Wang, R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993).
[23] S. S. Wang, R. Magnusson, J. S. Bagby, M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 8, 1470–1475 (1990).
[24] T. Sang, L. Wang, S. Ji, Y. Ji, H. Chen, and Z. Wang, “Systematic study of the mirror effect in a poly-Si subwavelength periodic membrane,” J. Opt. Soc. Am. A 26(3), 559–565 (2009).
[25] D. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng. 37, 2634–2646 (1998).
[26] I. Iatsunskyi, M. Kempiński, M. Jancelewicz, K. Załęski, S. Jurga and V. Smyntyna, “Structural and XPS characterization of ALD Al2O3 coated porous silicon,” Vacuum 113, 52–58 (2015).
[27] H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical
[28] Y. J. Choia, S. C. Gonga, D. C. Johnson, S. Golledge, G. Y. Yeomc, H. H. Parka, Applied Surface Science, 269, 92– 97, (2013).
[29] M. Crne, V. Sharma, J. Blair, J. O. Park, C. J. Summers, and M. Srinivasarao, “Biomimicry of optical microstructures of Papilio palinurus,” Europhys. Lett. 93, 14001 (2011).
[30] I. Byun and J. Kim, “Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser,” J. Micromech. Microeng. 20, 055024 (2010).
[31] 吳昱德,“菱鏡浸潤式干涉微影技術製作次波長結構及其應用”,國立中央大學光電科學研究所碩士論文,(2012)
[32] X. Li, Y. Shimizu, S. Ito, and W. Gao, “Fabrication of scale gratings for surface encoders by using laser interference lithography with 405 nm laser diodes,” Int. J. Precis. Eng. Manuf. 14(11), 1979–1988 (2013).