跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡柏昇
Bo-Sheng Cai
論文名稱: 數位式微流道檢驗晶片之製作與校正分析
Fabrication and Calibration in Digital Microfluidic System for Microchip Sensors
指導教授: 楊宗勳
Tsung-Hsun Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 99
語文別: 中文
論文頁數: 102
中文關鍵詞: 微機電系統技術波導共振式感測元件介電質電濕式驅動元件
外文關鍵詞: MEMS, GMR, EWOD
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在一般生化反應中,對樣品的分析通常包含三個典型步驟,即樣品分離處理、生物化學反應、結果檢測與分析。但此過程之程序不僅耗時且耗成本。因此本實驗提出將EWOD微流體系統做為驅動元件,感測元件則是選用波導共振方式檢測之光學元件,將兩元件整合為數位式微流道檢驗晶片,並透過電腦之控制進而使驅動與偵測能同步即時進行,並於感測元件部分設計兩個偵測點,用以進行同時多點偵測和訊號比對,使實驗量測之反應訊號更加準確。


    As analyzing the general biochemical reactions, there are three essential processes for the diagnostics, which are sample preparation, reaction, and detection. In the conventional process, it is too much time-consuming and expensive in cost. In this study, an integrated microchip has been implemented for the improvement. With the integrated microchip, it has demonstrated the combination between the effectively actuating module and the sensitively sensing module such that the whole biochemical reaction can be diagnosed very quickly and spending small amount of samples as possible. Finally, the sensitivity of the microchip sensors has been explored.

    中文摘要 --------------------------------------------------------------------------------- iv 英文摘要 ---------------------------------------------------------------------------------- v 第一章 緒論 ------------------------------------------------------------------------------ 1 1-1 生物晶片 --------------------------------------------------------------------------------------- 1 1-1-1 微陣列晶片 --------------------------------------------------------------------------- 2 1-1-2 實驗室晶片 --------------------------------------------------------------------------- 4 1-1-3 數位微流體系統 --------------------------------------------------------------------- 6 1-2 生物感測器 ------------------------------------------------------------------------------------ 9 1-2-1 螢光共振能量轉換 ----------------------------------------------------------------- 10 1-2-2 表面電漿共振 ----------------------------------------------------------------------- 11 1-2-3 干涉式生物感射器 ----------------------------------------------------------------- 12 1-2-4 波導共振 ----------------------------------------------------------------------------- 13 1-3 研究動機 -------------------------------------------------------------------------------------- 13 第 二 章 原理 ------------------------------------------------------------------------- 15 2-1 電濕潤原理 ----------------------------------------------------------------------------------- 15 2-1-1 介電質電濕式 ----------------------------------------------------------------------- 16 2-1-2 介電質電濕式液滴控制 ----------------------------------------------------------- 20 2-2 波導共振原理 -------------------------------------------------------------------------------- 23 第 三 章 元件設計與製作 ---------------------------------------------------------- 25 3-1 EWOD晶片設計 ---------------------------------------------------------------------------- 25 3-1-1 EWOD晶片製作流程 ------------------------------------------------------------- 28 3-2 GMR 元件設計------------------------------------------------------------------------------ 32 3-2-1 GMR 元件製作 --------------------------------------------------------------------- 35 3-3 數位微流體系統整合 ----------------------------------------------------------------------- 45 3-3-1 數位微流體系統整合 -------------------------------------------------------------- 45 3-3-2 EWOD微流體系統控制 ---------------------------------------------------------- 46 3-3-3 EWOD晶片驅動測詴 ------------------------------------------------------------- 48 3-3-4 GMR訊號量測系統 --------------------------------------------------------------- 58 第 四 章 整合晶片測詴 ------------------------------------------------------------- 64 4-1 蔗糖水溶液混合偵測實驗 ----------------------------------------------------------------- 64 4-2 量測結果 -------------------------------------------------------------------------------------- 66 第 五 章 靈敏度分析 ---------------------------------------------------------------- 70 5-1 基板與各介面間之干涉現象 -------------------------------------------------------------- 70 5-2 訊號疊加之穿透光譜 ----------------------------------------------------------------------- 71 5-3 整合晶片之干涉現象 ----------------------------------------------------------------------- 73 5-4 EWOD晶片之干涉現象 ------------------------------------------------------------------- 75 5-5 透過頻譜分析進行訊號處理 -------------------------------------------------------------- 76 第 六 章 結論 ------------------------------------------------------------------------- 83 參考文獻 -------------------------------------------------------------------------------- 85

    [1] T. Livache, H. Bazin, P. Caillat, and A. Roget, "Electroconducting polymers for the construction of DNA or peptide arrays on silicon chips," in Biosensors & Bioelectronics, Anonymous (ELSEVIER ADVANCED TECHNOLOGY, 1998), pp. 629-634.
    [2] P. J. Obeid and T. K. Christopoulos, "Continuous-flow DNA and RNA amplification chip combined with laser-induced fluorescence detection," Anal. Chim. Acta 494, 1-9 (2003).
    [3] D. J. Cahill, "Protein and antibody arrays and their medical applications," J. Immunol. Methods 250, 81-91 (2001).
    [4] D. S. Mehta, C. Y. Lee, and A. Chiou, "Multipoint parallel excitation and CCD-based imaging system for high-throughput fluorescence detection of biochip micro-arrays," Opt. Commun. 190, 59-68 (2001).
    [5] Y. Ito and M. Nogawa, "Preparation of a protein micro-array using a photo-reactive polymer for a cell-adhesion assay," Biomaterials 24, 3021-3026 (2003).
    [6] J. H. Kang and J. K. Park, "Development of a microplate reader compatible microfluidic device for enzyme assay," Sens. Actuator B-Chem. 107, 980-985 (2005).
    [7] Y. Huang and B. Rubinsky, "Flow-through micro-electroporation chip for high efficiency single-cell genetic manipulation," in Sensors and Actuators A-Physical, Anonymous (ELSEVIER SCIENCE SA, 2003), pp. 205-212.
    [8] Affymetrix, Gene-chip Technology
    http:/www.affymetrix.com/technology/index.aff
    [9] D. J. Cahill, "Protein and antibody arrays and their medical applications," Journal of Immunological Methods 250, 81-91 (2001).
    [10] K. Zimmermann, T. Eiter, and F. Scheiflinger, "Consecutive analysis of bacterial PCR samples on a single electronic microarray," Journal of Microbiological Methods 55, 471-474 (2003).
    [11] 游佳融, 李芳仁, "功能性探討蛋白質與蛋白質的交互作用," 後基因體時代之生物技術, 51-68 (2003).
    [12] M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, "An integrated nanoliter DNA analysis device," Science 282, 484-487 (1998).
    [13] A. Manz, N. Graber, and H. M. Widmer, "Miniaturized total chemical analysis systems: A novel concept for chemical sensing," Sensors and Actuators B: Chemical 1, 244-248 (1990).
    [14] J. West, M. Becker, S. Tombrink, and A. Manz, “Micro Total Analysis Systems: Latest Achievements,” Anal. Chem. 80, 4403–4419 (2008).
    [15] Petra S. Dittrich, K. Tachikawa, and A. Manz, “Micro Total Analysis Systems. Latest Advancements and Trends,” Anal. Chem. 78, 3887 (2006).
    [16] A. Chandrasekaran and M. Packirisamy, “Integrated micro-total analysis system (μTAS) for biophotonic enzymatic detections,” Proc. SPIE 7555, 75551D (2010).
    [17] Jesse V. Jokerst , James W. Jacobson, Bryon D. Bhagwandin, Pierre N. Floriano, Nicolaos Christodoulides and John T. McDevitt “Programmable Nano-Bio-Chip Sensors: Analytical Meets Clinical,” Anal. Chem, 82, 1571–1579 (2010).
    [18] M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, "An Integrated Nanoliter DNA Analysis Device," Science 282, 484 (1998).
    [19] S. K. Cho, Y. Zhao, and C. Kim, "Concentration and binary separation of micro particles for droplet-based digital microfluidics," Lab Chip 7, 490-498 (2007).
    [20] Gregory T.A. Kovacs., Micromachined transducers sourcebook (McGraw-Hill, 1998)
    [21] L. Yobas, M. A. Huff, F. J. Lisy, and D. M. Durand, "A novel bulk-micromachined electrostatic microvalve with a curved-compliant structure applicable for a pneumatic tactile display," J Microelectromech Syst 10, 187-196 (2001).
    [22] D. J. Laser and J. G. Santiago, "A review of micropumps," J Micromech Microengineering 14, R35-R64 (2004).
    [23] S. Shoji, "Microsystem Technology in Chemistry and Life Science ," H. Becker, A. Manz, Eds. 194, 164-188 (1998).
    [24] S. K. Cho, H. J. Moon, and C. J. Kim, "Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits," J Microelectromech Syst 12, 70-80 (2003).
    [25] J. Wang, "Carbon-Nanotube Based Electrochemical Biosensors: A Review," Wiley InterScience 17.
    [26] B. Palán, F. V. Santos, J. M. Karam, B. Courtois, and M. Husák, "New ISFET sensor interface circuit for biomedical applications," Sensors Actuators B: Chem. 57, 63-68 (1999).
    [27] R. L. Bunde, E. J. Jarvi, and J. J. Rosentreter, "Piezoelectric quartz crystal biosensors," Talanta 46, 1223-1236 (1998).
    [28] K. Ramanathan and B. Danielsson, "Principles and applications of thermal biosensors," Biosensors and Bioelectronics 16, 417-423 (2001).
    [29] W. Tan, X. Fang, J. Li and X. Liu,“Molecular beacons: a noel DNA probe for nucleic acid and protein studies,”Chem. Eur. J. 6 1107-1111(2000).
    [30] J. Homola, S. Yee and G. Gauglitz, “Surface Plasmon Resonance Sensors: Review,’’ Sensors and Actuators B 54, 3-5(1999).
    [31] A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, "Realization of a multichannel integrated Young interferometer chemical sensor," Appl. Opt. 42, 5649-5660 (2003).
    [32] N. Ganesh and Brian T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding, ” Appl. Phys. Lett. 88 , 071110 (2006).
    [33] M. G. Lippmann, "Relations entre les phenomenes electrique etcapillaires," Ann. Chim. Phys. 5, 494-549 (1875).
    [34] H. Matsumoto and J. E. Colgate, "Preliminary investigation of micropumping based on electrical control of interfacial tension," Micro Electro Mechanical Systems, 1990. Proceedings, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots. IEEE105-110 (1990).
    [35] B. Berge, “Electrocapillarity and wetting of insulator films by water,” Comptes Rendus de l’Academie des Sciences Serie II, Vol. 317, pp. 157-163 (1993).
    [36] H. Liu, S. Dharmatilleke, D. K. Maurya and A. A. O. Tay, “Dielectric materials for electrowetting-on-dielectric actuation,” Microsystem technologies-micro-and nanosystems-information storage and processing systems, Vol. 16, pp. 449-460 (2009).
    [37] J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C. Kim, "Electrowetting and electrowetting-on-dielectric for microscale liquid handling," Sensors and Actuators A: Physical 95, 259-268 (2002).
    [38] S. K. Cho, H. J. Moon, and C. J. Kim, "Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits," J Microelectromech Syst 12, 70-80 (2003).
    [39] H. Ren, V. Srinivasan and R. B. Fair, "Design and testing of an interpolating mixing architecture for electrowetting-based droplet-on-chip, " TRANSDUCERS, 12th International Conference on Solid-State Sensors, Actuators and Microsystems, Vol. 1, pp. 619-622 (2003). 38
    [40] M. G. Pollack, R. B. Fair and A. D. Shenderov, “Electrowetting-based actuation of liquid droplets for microfluidic applications,” Appl. Phys. Lett., Vol. 77, No. 11, pp. 1725-1726, (2000).
    [41] J. Kao, M. Lin, Y. C. Hu, C. S. Yu and H. C. Hu, "Multifunctional Biochemical Biochip System, " NARL (2006).
    [42] 吳建宏, "光學式生化反應即時偵測系統," 國立中央大學光電研究所 (2006).
    [43] Y.Nie,L.Wang, Z. Wang and C. Lai, "Beam selector dependent on incident angle by guided-mode resonant subwavelength grating," Opt Eng.41,2966-2969 (2002).
    [44] Y. N. Xia and G. M. Whitesides, "Soft lithography," Annu. Rev. Mater. Sci. 28, 153-184 (1998).
    [45] George M. Whitesides, E. Ostuni, S.Takayama, X. Jiang, and Donald E. Ingber,"Soft lithography in biology and biochemistry," Annual Review of Biomedical Engineering, Vol. 3,pp. 335-373 (2001).
    [46] 洪國騰, "電濕式驅動系統應用於微奈米級圖樣之製作, " 國立中央大學光電研究所 (2010).
    [47] 林裕博, "自製平板式直壓印機與其應用," 國立中央大學光電研究所 (2010).
    [48] Piramoon, http://www.piramoon.com/sucrose.php.

    QR CODE
    :::