| 研究生: |
黃至平 Chih-Ping Huang |
|---|---|
| 論文名稱: |
應用衛星資料反演颱風能量及其在颱風強度變化之探討 |
| 指導教授: |
劉振榮
Gin-Rong Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣物理研究所 Graduate Institute of Atmospheric Physics |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 海氣參數 、消散期 、颱風強度 |
| 外文關鍵詞: | Air-sea parameters, Dissipative state, Typhoon intensity |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
颱風強度的變化一直為科學家所重視,颱風的能量與強度變化關係,更是令人關注的研究主題。前人研究指出颱風強度的增強主要得益於總海氣能量的供給,但以往的研究較少考慮到動能的消耗,故本篇研究即以總能量變化的觀點來探討颱風強度變化,並藉能量變化與颱風強度兩者之關係,建立一個通用方程式,以期改善颱風強度的預報。
本研究分析2001年到2007年5月到11月期間生成於西北太平洋的颱風個案,利用SSM/I衛星資料計算距離颱風中心三個經緯度的方形區域內的海氣參數平均累加,估計環境場提供給颱風系統的總合成熱能;並利用QuikSCAT衛星資料計算該範圍內的動能釋放,以總能量的觀點分析能量變化,進而建立一個更完備的颱風強度變化之能量觀點。
本研究的分析顯示:颱風生命期發展前期,有較弱的動能釋放,而總合成熱能卻是逐漸增高;在成熟期,則動能釋放與總合成熱能變化不大;在颱風耗散期之前,總合成熱能明顯減弱很多,而動能釋放持續增大導致颱風強度減弱,顯見能量變化對颶風強度之影響。另外,本研究所建立的迴歸方程在預測颱風消散期之強度變化上有相當不錯的準確性(相關係數約0.61),顯示以颱風總能量變化做為颱風強度變化指標,可改善預測颱風消散期之強度預報準確率。
This article describes an approach to estimate typhoon intensity with a model that considers the total energy conversion within a typhoon. The main total energy source and sink are the total heat energy from sea surface thermal flux and the kinetic energy dissipation, respectively. It is interesting that the typhoon intensity seems dependent on the total energy source and sink closer than it was shown by the previous theoretical models. In this study, the roles of total energy conversion in determining typhoon intensity are investigated.
This research analyzed the Northwestern Pacific typhoons in the typhoon seasons (May to November) from 2001 to 2007. The main aim of this research is to employ SSM/I data and QuikSCAT data to retrieve the air-sea parameters, and estimate the kinetic energy released from typhoons, and then to find the possible energy signals as a typhoon intensity indicator.
The results indicate that the total energy conversion within a typhoon may lead to the intensity conversion appreciably different from the lifetime of the typhoon state. At the beginning, the energy sink is usually significant smaller than the source and then both of them turn into a rough tie state. Finally, the sink is much larger than the source. That seems the typhoon intensity is highly correlated with the total energy conversion (correlation coefficient is 0.61), showing that the index of a typhoon’s total energy conversion can be used to improve the forecast of a typhoon when it is during its dissipative state.
曾忠一,1988:大氣衛星遙測學。渤海堂出版社,630頁,台灣台北。
蔡文元,1996:SSM/I資料於颱風強度估算和降雨特性分析上之應用。國立中央大學大氣物理研究所碩士論文,69頁,台灣中壢。
黃曉薇,2000:應用SSM/I 衛星資料於西北太平洋颱風特性之分析。國立中央大學大氣物理研究所碩士論文,95頁,台灣中壢。
劉崇治與劉振榮,2000:應用衛星資料在梅雨季海上中尺度對流系統生成前兆之初步探討。大氣科學,第二十八期,第四號,317-341頁。
項義華,2002:應用SSM/I衛星資料分析桃芝颱風與納莉颱風之降雨及海氣參數變化,92頁,台灣中壢。
劉嘉騏,2007:應用SSM/I衛星資料分析颱風形成之激發機制,國立中央大學大氣物理研究所碩士論文,92頁,台灣中壢。
林欣怡,2008:應用衛星資料反演之海氣能量參數分析年際大氣環境差異對颱風生成條件之影響,國立中央大學大氣物理研究所碩士論文,126頁,台灣中壢。
Alliss, R. L., S. Raman, and S. W. Chang, 1992 : Special Sensor Microwave/Imager (SSM/I) observations of Hurricane Hugo (1989). Mon. Wea. Rev., 120, 2723-2737.
Chiu, L. S., G. R. North, D. A. Short, and A. McConnell, 1990 : Rain estimation from satellite : Effect of finite field of view. J. Geophys. Res., 95, 2177-2185.
Dvorak, V. F., 1984 : Tropical cyclone intensity analysis using satellite data, NOAA Tech. Rep. NESDIS 11, 47 pp., NOAA/NESDIS, Washington, D. C.
Dvorak, V. F., 1975 : Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420-430.
Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I. J. Atmos. Sci., 42, 1062-1071.
Emanuel, K. A., 2006: Hurricanes: Tempests in a greenhouse. Physics Today, 200608, USA, 3pp.
Goff, J. A., and S. Gratch, 1946 : Low-pressure properties of water from 160 to 212oF. Trans. Amer. Soc. Heat and Vent. Eng., 52, 95-122.
Goodberlet, M. A., and C. T. Swift, 1992:Improved retrievals from the DMSP wind speed algorithm under adverse weather conditions. IEEE Trans. Geo. Rem. Sen., 30, 1076-1077.
Goodberlet, M. A., C. T. Swift, and J. C. Wilkerson, 1989 : Remote sensing of ocean surface winds with the Special Sensor Microwave/Imager. J.Geophys. Res., 94, C10, 14547-14555.
Gray, W. M., 1979 : Hurricanes : Their Formation, Structure and Likely Role in the Tropical Circulation. Meteorology over the Tropical Oceans, James Glaisher House, 155-218.
Kurihara, Y., and R. E. Tuleya, 1974 : Structure of a tropical cyclone developed in a three-dimensional numerical simulation model. J. Atmos. Sci., 31, 893-919.
Liou, K. N., 2002: An Introduction to Atmospheric Radiation. Academic Press, Ca., USA, 583 pp.
Liu, G.-R., C.-C. Liu and T.-H. Kuo, 2002 : A Satellite-derived Objective Potential Index for MCS Development during the Mei-Yu Period. Journal of the Meteorological Society of Japan, Vol. 80, No. 3, pp. 503-517.
Liu, G.-R., C.-C. Liu, and T.-H. Kuo, 2001 : A contrast and comparison of near-sea surface air temperature/humidity from GMS and SSM/I data with an improved algorithm. IEEE Trans. Geosci. Remote Sens, 39, 2148-2157.
Palmen, E., 1948 : On the formation and structure of tropical cyclones. Geophysics, 3, 26-38.
Rao, G. V., and P. D. MacArthur, 1994 : The SSM/I estimated rainfall amounts of tropical cyclones and their potential in predicting the cyclone intensity changes. Mon. Wea. Rev., 122, 1568-1574.
Rodgers, E. B., and H. F. Pierce, 1995 : A satellite observational study of precipitation characteristics in Western North Pacific tropical cyclones. J. Appl. Meteor., 34, 2587-2599.
Rodgers, E. B., and R. F. Adler, 1981 : Tropical cyclone rainfall characteristics as determined from a satellite passive microwave radiometer. Mon. Wea. Rev., 109, 506-521.
Rodgers, E. B., J. Halverson, J. Simpson, and H. Pierce, 2000 : Environmental forcing of Super typhoon Paka’s (1997) latent heat structure. J. Appl. Meteor., 39, 1983-2006.
Rosenthal, S. L., 1978 : Numerical simulation of a tropical cyclone development with latent heat release by the resolvable scales. I: Model description and preliminary results. J. Atmos. Sci., 35, 258-271.