跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳宜廷
Yi-Ting Chen
論文名稱: 兩種類型的Regularized Buckley-Leverett方程古典解的局部存在性
Local Existence of Classical Solutions to Two Types of Regularized Buckley-Leverett Equations
指導教授: 洪盟凱
John M. Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 99
語文別: 英文
論文頁數: 22
中文關鍵詞: 定點定理.柯西問題守恆定律色散方程耗散方程Regularized Buckley-Leverett方程
外文關鍵詞: dissipative equations, Regularized Buckley-Leverett equations, dispersive equations, Fixed point theorem., conservation laws, Cauchy problem
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們考慮兩種類型的Regularized Buckley-Leverett方程(縮寫成RBL方程)。第一種類型的RBL方程是拋物線型的偏微分方程,而第二類的RBL方程為具有耗散和色散的偏微分方程。在第2節,我們將推導出這兩種型號的偏微分方程。在第3節,我們將使用固定點定理證明這兩個RBL方程的柯西問題的古典解的局部存在及唯一性。


    In this thesis, we consider two types of regularized Buckley-Leverett equations (RBL equations for short). The first type of RBL equations are the scalar partial differential equations of parabolic type, while the second type of RBL equations are the scalar partial differential equations consist of both the dissipative and dispersive terms. In Section 2 we will derive these two models of PDEs. In Section 3 we will use the fixed point theorem to show the local existence and uniqueness of classical solutions to the Cauchy problem of these two RBL equations.

    中文摘要……………………………………………………………i 英文摘要……………………………………………………………ii Contents……………………………………………………………iii 1.Introduction……………………………………………………01 2.Two Types of Regularized Buckley-Leverett Equations…02 3.Local Existence of Classical Solutions…………………05 3.1 Type one…………………………………………………05 3.2 Type two…………………………………………………10 4.References………………………………………………………14

    [1] C.J.Amick, J.L.Bona and M.E.Schonbek, Decay of
    solutions of somenon-linear wave equations,
    J.Diff.Eq.81 (1989), 1-49.
    [2] T.B.Benjamin, J.L.Bona, J.J.Mahony, Model Equations
    for Long Waves in Nonlinear Dispersive Systems,
    Philos.Royal Soc.London Series A, 272,(1972), 47-78.
    [3] B.Boczar-Karakiewicz, J.L.Bona and D.Cohen,
    Interaction of shallowwater waves and bottom
    topography, In Dynamical problems in continuum
    physics, IMA Series in Mathematics and Its
    Aplications,4,Springer-Verlag (1987), 131-176.
    [4] B.Boczar-Karakiewicz, J.L.Bona and B.Pelchat,
    Interaction of internalwaves with the sea bed on
    continental shelves, Continental Shelf Res.11
    (1991), 1181-1197.
    [5] J.L.Bona, H.Chen, S.Sun and B.Zhang, Comparison of
    quarter-plane and two-point boundary value problems:
    the BBM-equation, Discrete Contin.Dyn.Sys.13
    (2005), 921-940.
    [6] J.L.Bona and L.Luo, Initial-boundary value problems
    for model equations for the propagation of long waves,
    in: G.Gerrayra, G.Goldstein and F.Neubrander (Ed.),
    Lecture Notes in Pure and Appl.Math.,168, Dekker,
    New York, (1995), 65-94.
    [7] J.L.Bona, W.G.Pritchard and L.R.Scott, An evaluation
    of a model equation for water waves, Philos.Royal
    Soc.London Series A 302 (1981), 457-510.
    [8] J.L.Bona, S.Sun and B.-Y.Zhang, Forced
    oscillations of a damped Korteweg-de Vries equation in
    a quarter plane, Commun.Contemp.Math.5 (2003),
    369-400.
    [9] J.L.Bona and J.Wu, Temporal growth and eventual
    periodicity for dispersive wave equations in a quarter
    plane, to appear in Discrete Contin.Dyn.Sys.
    [10] J.M.Hong, J.Wu and J.-M. Yuan, Explicit solution
    representation for the BBM equation in a quarter plane
    and the eventual periodicity.
    [11] E.H.Lieb and M.Loss, Analysis (second edition),
    American Mathematical Society, Providence, RI (2001).
    [12] J.Shen, J.Wu and J.-M. Yuan, Eventual periodicity for
    the KdV equation on a half-line, Physica D 227 (2007),
    105-119.
    [13] C.J.Van Duijn, A.Mikelic, and I.S.Pop.Effective
    equations for twophase flow with trapping on the micro
    scale. SIAM Journal on Applied Mathematics,
    62(5):1531-1568, 2002.
    [14] S.Hassanizadeh and W.Gray.Mechanics and
    thermodynamics of multiphase flow in porous media
    including interphase boundaries. Adv. Water Resour.,
    13:169-V186, 1990.
    [15] S.Hassanizadeh and W.Gray.Thermodynamic basis of
    capillary pressure in porous media. Water Resour.
    Res., 29:3389-3405, 1993.
    [16] A.Corey.The interrelation between gas and oil
    relative permeabilities.Producer’s Monthly,
    19(1):38-41, 1954.
    [17] C.J.Van Duijn, A.Mikelic, and I.Pop.Effective
    Buckley-Leverett equations by homogenization. Progress
    in industrial mathematics at ECMI, pages 42-52, 2000.
    [18] Y.Wang, Central schemes for the modified Buckley-
    Leverett equation, Ph.D. thesis, Ohio State Univ.,
    2010.

    QR CODE
    :::