跳到主要內容

簡易檢索 / 詳目顯示

研究生: 范喻翔
Yu-Hsiang Fan
論文名稱: 淨水場濾池反洗廢水水量與水質特性之研究
Quantity and Quality of Filter Backwash Wastewater in Water Treatment Plant
指導教授: 曾迪華
Dyi-Hwa Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 111
中文關鍵詞: 濁度韋勒式快濾池哈丁式快濾池反洗廢水淨水場
外文關鍵詞: turbidity, Wheeler filter, Hardinge filter, filter backwash wastewater, water treatment plant
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以平鎮淨水場為案例場,藉濾池反洗廢水水量與水質調查,探討淨水場反洗廢水的產量及水質特性,作為後續回收處理及再利用之依據。另一方面,本研究藉由濾池操作資料的收集,提出場內改善濾池操作之建議,以減少反洗廢水產生。
    調查結果顯示,96 年哈丁式及韋勒式快濾池之反洗廢水量的平均值,分別約為4,587 CMD和9,871 CMD,以韋勒式快濾池反洗廢水為主要來源。反洗廢水量的多寡與原水和沉澱水之濁度並無明顯相關,而與各濾池的操作濾程長短有關。水質分析結果顯示,反洗廢水中的主要污染物為懸浮固體物。在一般的低原水濁度時期,哈丁式與韋勒式快濾池反洗廢水的TSS平均濃度,分別為417 mg/L與184 mg/L,其平均顆粒粒徑分佈範圍為24~57 μm。然而,在高原水濁度季節,哈丁式快濾池反洗廢水的TSS 濃度,會顯著增加至801 mg/L。此外,反洗廢水通常僅含低濃度的有機物,平均DOC濃度約為4.0 mg/L。
    以預沉澱結合UF程序處理反洗廢水的實驗結果顯示,廢水濁度顆粒均能被有效去除,經沉澱處理後去除率可達93%以上,而預沉澱及UF程序處理後之濁度分別為7.9 NTU及0 NTU,但對於溶解性有機物則無明顯的去除效果,DOC的去除率僅為7%及23%,顯示反洗廢水在回收處理上,仍有進一步改善的空間。在反洗廢水減量方面,本研究提出場內濾池的檢修、改善反洗時機的判定以及控制反洗時間的長短,及回收再利用適當處理後之反洗廢水等四種源頭減量之策略,以利場內未來達廢水零排放目標。


    The objectives of this study were first to investigate the quantity and quality of filter backwash wastewater (FBW) in Ping-Jan Water Treatment Plant (WTP), and then further to evaluate the possibility for treating and reusing of FBW. In addition, the strategies of reducing the quantities of FBW in this plant were also explored based on the daily information of filter operations.
    The survey results showed that the year average quantities of FBW from Hardinge and Wheeler filters were 4,587 and 9,871 CMD, respectively in the year of 2007. Thus, the FBW from Wheeler filters was the primary source of wastewaters in Ping-Jan WTP. In addition, the production quantity of FBW was independent on the turbidity of raw water and settled water, whereas directly correlated to the time of filter run. The results of water quality analysis indicated that the major component of pollutants in FBW was the total suspended solid (TSS). At the season of raw water with low turbidity, the TSS concentration in FBW was 417 mg/L and 184 mg/L for Hardinge filters and Wheeler filters, respectively. Also, the average particle size of TSS was in the range of 24~57 μm. However, as raw water with high turbidity, the TSS concentration in FBW from Hardinge filters was increased significantly to 801 mg/L. It was also observed that the FBW generally contained low organic contents with average DOC concentration was about 4.0 mg/L.
    The experimental results revealed that the turbidity in FBW could be effectively removed by pre-sedimentation followed by UF membrane process. The turbidity removal efficiency was 93% after sedimentation, and the residue turbidity after pre-sedimentation and UF process were 7.9 NTU and 0 NTU, respectively. In contrast, the DOC removal efficiency for pre-sedimentation and UF process were only 7% and 23%, respectively. These results elucidated the need of further study on water quality improvement for FBW reuse. Finally, in order to meet the goals of FBW reduction and zero discharge in Ping-Jan WTP, four strategies, including on-schedule examination and maintenance of filters, setting the new guideline for start-up filter backwashing operation, shortening the time need for backwash, and reusing and recycling of FBW with proper treatment, were recommended.

    摘要 1 Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 濾池反洗廢水的產生 3 2.2 反洗廢水的特性 4 2.2.1 反洗廢水的物化特性 8 2.2.2 反洗廢水的生物特性 9 2.3 迴流反洗廢水對淨水場之影響 9 2.4 反洗廢水回收處理技術 13 2.4.1 混凝沉澱 15 2.4.2 薄膜程序 17 2.4.3 其他處理技術 20 2.5 平鎮淨水場現況 21 2.5.1 原水水質近況 21 2.5.2 處理流程 23 2.5.3 濾池現況 25 第三章 研究材料、設備與方法 31 3.1 研究架構 31 3.2 研究方法 31 3.3 反洗廢水處理實驗 38 3.4 水質分析方法及步驟 40 3.5 實驗藥品及分析儀器 46 第四章 結果與討論 49 4.1 反洗廢水產量分析 49 4.1.1 反洗廢水量推估結果 49 4.1.2 沉澱水濁度對反洗廢水產量之影響 54 4.1.3 水頭損失速度對反洗廢水量之影響 60 4.2 反洗廢水水質特性 65 4.2.1 濾池反洗廢水物化性質 65 4.2.2 指標性微生物 75 4.2.3 反洗廢水濁度歷線 78 4.3 反洗廢水排放減量 83 4.3.1 反洗廢水處理初步評估 83 4.3.2 反洗廢水減量策略 88 第五章 結論與建議 95 5.1 結論 95 5.2 建議 96 參考文獻 98 附錄1 1/19~1/22韋勒式快濾池處理水量及液面高度趨勢圖 103 附錄2 7/28~8/1韋勒式快濾池處理水量及液面高度趨勢圖 106 附錄3 平鎮淨水場現場照片 109 附錄4 中水道二元供水系統建議標準 110 附錄5 飲用水水質標準 111

    1. Adin, A., L. Dean, F. Bonner, A. Nasser, and Z. Huberman, “Characterization and destabilization of spent filter backwash water particles,” Water Science and Technology: Water Supply, Vol. 2, pp. 115-122(2002).
    2. American Water Works Association (AWWA), “Water quality and treatment-a handbook of community water supplies,” 5th edition, McGraw-Hill, Inc., USA(1999).
    3. Amirtharajah, A., “The interface between filtration and backwashing,”Water Research, Vol. 19, pp. 581-588(1985).
    4. AQUA-AEROBIC SYSTEMS, INC., “AquaABF®,” http://www.aqua-aerobic.com/aquaABF.asp#(2009).
    5. Arora, H., Giovanni, G. D. and Lechevallier, M., “Spent filter backwash water contaminants and treatment strategies,” Journal of American Water Works Association, Vol.93, pp.100-112(2001).
    6. Asiawater.Bussiness.com,“Rapid Gravity Dual Media Filters,” http://www.asiawaterbusiness.com/news_show.php?language=english&n_id=226(2009).
    7. Brügger, A., “Reuse of filter backwash water using ultrafiltration technology,” Filtration and Separation, Vol. 37, January - February, pp. 22-26(2000).
    8. Bourgeois, J. C., M. E. Walsh, and G. A. Gagnon, “Comparison of process options for treatment of water treatment residual streams,” Journal of Environmental Engineering and Science, Vol. 3, pp. 477-484(2004).
    9. Bourgeois, J. C., M. E. Walsh, and G. A. Gagnon, “Treatment of drinking water residuals: comparing sedimentation and dissolved air flotation performance with optimal cation ratios” Water Research, Vol. 38, pp. 1173-1182(2004).
    10. Cocchia, S., K. H. Carlson, and F. Marinelli, “Use of total suspended solids in characterizing the impact of spent filter backwash recycling,” Journal of Environmental Engineering, Vol. 128, pp. 220-227(2002).
    11. Cornwell, D. and M. MacPhee, “Effects of spent filter backwash water recycling on cryptosporidium removal,” Journal of American Water Works Association, Vol. 93, pp. 153-162(2001).
    12. Dotremont, C., B. Molenberghs, W. Doyen, P. Bielen, and K. Huysman, “The recovery of backwash water from sand filters by ultrafiltration,” Desalination, Vol. 126, pp. 87-94(1999).
    13. Eades, A., B. J. Bates, and M. J. MacPhee, “Treatment of spent filter backwash water using dissolved air flotation,” Water Science and Technology, Vol. 43, pp. 59-66(2001).
    14. Kawamura, S., “Design and operation of high-rate filters,” Journal of American Water Works Association, Vol. 91, pp. 77-90(1999).
    15. Lipp, P. and G. Baldauf, “Application of out-in MF/UF-systems for drinking water treatment with air supported backwash-three case studies,” Desalination, Vol. 147, pp. 63-68(2002).
    16. McGlohorn, G., G. Trofatter, D. Kinard, B. Randolph, R. Welch (eds.), “Filter assessment manual,”3rd ED, South Carolina Department of Health and Environmental Control(2003).
    17. MWH, "Water treatment principles and design," 2nd Ed., John Wiley & Sons(2005).
    18. Nasser, A., Z. Huberman, L. Dean, F. Bonner, and A. Adin, “Coagulation as a pretreatment of SFBW for membrane filtration,” Water Sciences and Technology: Water Supply, Vol. 2, pp. 301-306(2002).
    19. ReiBmann, F. G., E. Schulze, and V. Albrecht, “Application of a combined UF/RO system for the reuse of filter backwash water from treated swimming pool water,” Desalination, Vol. 178, pp. 41-49(2005).
    20. “Reverse osmosis and nanofiltration,” American Water Works Association, Denver(1999).
    21. Reissmann, F.G., and W. Uhlb, “Ultrafiltration for the reuse of spent filter backwash water from drinking water treatment,” Desalination, Vol. 198, pp. 225-235(2006).
    22. Song, H., X. Fan, Y. Zhang, T. Wang, and Y. Feng, “Application of microfiltration for reuse of backwash water in a conventional water treatment plant – a case study, ”Water Science and Technology: Water Supply, Vol. 1, pp. 199-206(2001).
    23. Tobiason, J. E., J. K. Edzwald, V. Gilani, G. S. Kaminski, H. J. Dunn, and P. B. Galant, “Effects of waste filter backwash recycle operation on clarification and filtration,” Journal of Water Supply: Research and Technology-AQUA, Vol. 52, pp. 259-275(2003).
    24. Tobiason, J. E., J. K. Edzwald, B. R. Lvesque and G. K. Kaminski, “Full-scale assessment of waste filter backwash recycle,” Journal of American Water Works Association ,Vol.95, pp.80-93(2003).
    25. United States Environmental Protection Agency, “Filter backwash recycle rule,” EPA 816-R-02-014(2002).
    26. Vigneswaran, S., S. Boonthanon, and H. Prasanthi, “Filter backwash water recycling using crossflow microfiltration,” Desalination, Vol. 106, pp. 31-38(1996).
    27. Vos, G., Y. Brekvoort, and P. Buys, “Full-scale treatment of filter backwash water in one step to drinking water,” Desalination, Vol. 113, pp. 283-284(1997).
    28. Willemse, R. J. N., and Y. Brekvoort, “Full-scale recycling of backwash water from sand filters using dead-end membrane filtration,” Water Research, Vol. 33, pp. 3379-3385(1999).
    29. 台北自來水事業處,「公館淨水場營運成果期末報告書」,台北自來水事業處(2008)。
    30. 台北自來水事業處長興淨水場,「淨水場評鑑期末成果報告書」,台北自來水事業處(2008)。
    31. 平鎮淨水場,「平鎮淨水場九十六年度期末營運成果報告書」,平鎮淨水場(2007)。
    32. 平鎮淨水場,「九十七年度工作計畫書」,平鎮淨水場(2008)。
    33. 余菀婷、張嘉宏、樊運成,「提升淨水場用水效能-以過濾單元之反沖洗水用水減量為例」,清潔生產暨永續發展研討會論文集(2007)。
    34. 李文善,「預先混凝處理之截留式微過濾薄膜回收淨水場砂濾反洗水之研究:膠羽特性影響」,國立交通大學環境工程研究所碩士論文(2007)。
    35. 行政院環境保護署,「環境水質監測年報」,行政院環境保護署(2007)。
    36. 朱敬平、吳政倫、李文善、黃志彬、鍾裕仁,「以薄膜技術回收淨水場快濾池反沖洗水之可行性研究」,中興工程季刊,第99期,pp.19-26(2008)。
    37. 林敬傑,「薄膜程序處理及回收薄膜生物反應槽(MBR)出流水之研究」,國立中央大學環境工程研究所碩士論文(2007)。
    38. 洪名梓、王啟明、洪達朗、史午康,「自來水設施操作維護手冊」,中華民國自來水協會(1993)。
    39. 姜佳伶,「淨水場沉澱及過濾單元濁度去除及其衍生廢污量之研究」,國立中央大學環境工程研究所碩士論文(2007)。
    40. 楊正邦,「反沖洗廢水處理技術之研究」,台灣科技大學化學工程系碩士論文(2005)。
    41. 劉彭譽,「臭氧結合傳統淨水程序控制鳳山水庫原水消毒副產物生成之研究」,逢甲大學環境工程與科學研究所碩士論文(2002)。
    42. 蔡桂郎,「自來水工程規劃」,國彰出版社(1985)。
    43. 經濟部水利署,「民生及公共大用水戶節水輔導計畫」,經濟部水利署(2007)。
    44. 經濟部水利署,「自來水淨水場操作管理評鑑及輔導計畫(2/3)」,經濟部水利署(2007)。

    QR CODE
    :::