跳到主要內容

簡易檢索 / 詳目顯示

研究生: 呂元傑
Yuan-Chieh Lu
論文名稱: 高功率脈衝磁控濺鍍氧化銦鎵鋅
Fabrication of IGZO thin films using high power impulse magnetron sputtering
指導教授: 陳昇暉
Sheng-Hui Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 81
中文關鍵詞: 高功率脈衝磁控濺鍍氧化銦鎵鋅緩衝層退火CAAC-IGZO
外文關鍵詞: HiPIMS, IGZO, buffer layer, annealing, CAAC-IGZO
相關次數: 點閱:25下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今的顯示器主要是由薄膜電晶體(thin film transistor,TFT)來驅動,而薄膜電晶體中的主動層(active layer)材料為顯示器特徵之關鍵,多數商用顯示器主要是使用非晶矽(a-Si)作為主動層,然而a-Si的載子遷移率不到1 cm2/Vs,低的載子遷移率造成低的顯示速度,a-Si已無法滿足高速顯示器的需求,其他材料如氧化銦鎵鋅(IGZO)的載子遷移率超過10 cm2/Vs以上,除了高載子遷移率之外還有均勻性佳、成本低…等優點,適合取代傳統非晶矽。
    本研究使用高功率脈衝磁控濺鍍IGZO,利用高功率脈衝高電漿密度、高離化率、薄膜均勻性以及緻密度佳…等優點,成功地成長出高載子遷移率的IGZO薄膜,更一步藉由ZnO緩衝層以及退火製程成長出c軸取向結晶型IGZO(CAAC-IGZO),CAAC-IGZO相較於a-IGZO有更低的漏電流以及更高的薄膜均勻性。


    Displays nowadays are mainly driven by thin film transistor(TFT). The active(channel) layer material in the TFT has become the key for the property of displays. Most of the commercial displays applied amorphous silicon(a-Si) as the active layer. However, the carrier mobility of a-Si is less than 1 cm2/Vs, which is too low for the high speed display. The carrier mobility of other materials such as amorphous indium gallium zinc oxide(a-IGZO) exceeds above 10 cm2/Vs. In addition to high carrier mobility, it has the advantages of good uniformity and low cost which are better than a-Si.
    In this study, the high power impulse magnetron sputtering(HiPIMS) has been applied to deposit indium gallium zinc oxide. Utilizing its advantages of the high power impulse, the high plasma density, the high ionization rate, the good uniformity and density for thin film, a high carrier mobility IGZO film has been fabricated successfully. Besides, by using ZnO buffer layer and post annealing, the c-axis aligned crystalline IGZO(CAAC-IGZO) has been also fabricated with lower leakage current and higher film uniformity compared with a-IGZO.

    目錄 摘要 i Abstract ii 致謝 iii 圖目錄 vii 表目錄 x 第一章、緒論 1 1-1前言 1 1-2研究動機 3 第二章、文獻回顧與基本原理 6 2-1透明導電膜 6 2-2緩衝層以及ZnO材料特性 6 2-3 IGZO簡介 8 2-4濺鍍原理 12 2-5高功率脈衝磁控濺鍍 13 2-6退火 15 第三章、實驗架構、設備與量測儀器 16 3-1實驗架構 16 3-2實驗設備 20 3-2-1濺鍍系統 20 3-2-2 HiPIMS系統 21 3-2-3偏壓電源設備 23 3-2-4高溫退火爐管 24 3-3量測儀器 25 3-3-1光譜儀 25 3-3-2霍爾量測儀(Hall measurement) 26 3-3-3 X光繞射分析儀(X-ray diffraction,XRD) 28 3-3-4原子力顯微鏡(Atomic Force Microscope,AFM) 30 3-3-5高解析掃描穿透式電子顯微鏡(Transmission electron microscope,TEM) 30 第四章、結果與討論 32 4-1非晶型之IGZO薄膜 32 4-1-1濺鍍功率對IGZO薄膜性質的比較 32 4-1-2氧氣流量對IGZO薄膜性質的影響 36 4-1-3儲能時間對IGZO薄膜性質的影響 37 4-2結晶型之IGZO薄膜 39 4-2-1退火溫度對結晶性的影響 39 4-2-2氧氣流量對結晶性的影響 42 4-2-3儲能時間對結晶性的影響 44 4-2-4正偏壓對結晶性的影響 50 4-2-5負偏壓對結晶性的影響 54 第五章、結論 58 參考資料 60

    [1]Available:https://www.chinatimes.com/newspapers/20200102000215-260202?chdtv
    [2]Available:http://www.cena.com.cn/2018DIC/file/12.pdf
    [3]Available:https://www.zhihu.com/question/22263252
    [4]Available:http://newjust.masterlink.com.tw/HotProduct/HTML/Basic.xdjhtm?A=PA249-1.html
    [5]T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors”, Science and Technology of Advanced Materials, vol. 11, pp. 044305, 2010.
    [6]Available:https://www.displaydaily.com/paid-news/ldm-mdm/technology/panel-makers-looking-at-ltps-oxide-hybrids
    [7]Available:http://www.extremetech.com/computing/170970-igzo-display-tech-finally-makes-it-to-mass-market-ipad-air-now-high-res-laptops-and-desktops-next
    [8]S. Yamazaki, J. Koyama, Y. Yamamoto, and K. Okamoto, “Research, Development, and Application of Crystalline Oxide Semiconductor” Society for Information Display Symposium Digest of Technical Papers, vol. 43, pp. 183-186, 2012.
    [9]S. Yamazaki, “A possibility of crystalline indium-gallium-zinc-oxide to
    very large scale integration”, ECS Transactions, vol. 54, pp. 85-96, 2013.
    [10]楊明輝,「透明導電膜」,藝軒圖書出版社,2012。
    [11]郭倩丞、李正中,「透明導電薄膜特性及光電元件應用」,中國工程,第84卷06期,68-78頁,民國100年12月。
    [12]K. Nomura, H Ohta, K. Ueda, T. Kamiya, M. Orita, M. Hirano, T. Suzuki, C. Honjyo, Y. Ikuhara and H. Hosono “Growth of epitaxial ZnO thin films on lattice-matched buffer layer: Application of InGaO3(ZnO)6 single-crystalline thin film”, Thin Solid Films, vol. 486, pp. 28-32, 2005.
    [13]K. Nomura, H Ohta, K. Ueda, T. Kamiya, M. Orita, M. Hirano, T. Suzuki, C. Honjyo, Y. Ikuhara and H. Hosono “Growth mechanism for single-crystalline thin film of InGaO3(ZnO)5 by reactive solid-phase epitaxy”, Journal of Applied Physics, vol. 95, pp. 5532-5539, 2004.
    [14]Neil W. Ashcroft and N. David Mermin, Solid State Physics, Harcourt: Orlando, 1976, Chapter 4.
    [15]Available:https://en.wikipedia.org/wiki/Zinc_oxide
    [16]N. Kimizuka and T. Mohri, “Spinel, YbFe2O4, and Yb2Fe3O7 types of structures for compounds in the In2O3 and Sc2O3–A2O3–BO systems [A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn] at temperatures over 1000°C”, J. Solid State Chem, vol. 60, pp. 382-384, 1985.
    [17]K. Nomura1, H. Ohta1, A. Takagi, T. Kamiya, M. Hirano1 and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”, Nature, vol. 432, pp.488-492, 2004.
    [18]H. Hosono, “How we made the IGZO transistor”, Nature Electronics, vol. 1, pp. 428, 2018.
    [19]J. H. Ye, P. M. Chen, C. T. Peng, W. M. Huang, Y. A. Wu, “Development and characteristic analysis of crystalline IGZO”, Society for Information Display Symposium Digest of Technical Papers, vol. 47, pp. 1213-1216, 2016.
    [20]T. Chen, M.-Y Wu, R. Ishihara, K. Nomura, T. Kamiya, H. Hosono and C.I. M Beenakker, “Excimer laser crystallization of InGaZnO4 on SiO2 substrate”, Journal of Materials Science, vol. 22, pp. 1694-1696, 2011.
    [21]K. Ide, K. Nomura, H. Hiramatsu, T. Kamiya and H. Hosono, “Structural relaxation in amorphous oxide semiconductor, a-In-Ga-Zn-O”, Journal of Applied Physics, vol. 111, pp.073513, 2012.
    [22]M. Lee and J. Dho, “Controlling the Electrical and the Optical Properties of Amorphous IGZO Films Prepared by Using Pulsed Laser Deposition”, Journal of the Korean Physical Society, vol. 58, pp.492-497, 2011.
    [23]S. Cho, M. Jeong, J. Kim, Y. Kwon, H. Kim, J. Lee, and H. Cho, “A combinatorial approach to solution-processed InGaO3(ZnO)m superlattice films: growth mechanisms and their thermoelectric properties”, CrystEngComm, vol. 18, pp. 807-815, 2016.
    [24]D. Maurya, A. Sardarinejad and K. Alameh,”Recent Developments in R.F. Magnetron Sputtered Thin Films for pH Sensing Applications—An Overview”, Coatings, vol. 4, pp. 756-771, 2014.
    [25]V. Kouznetsov, K. Macak, J. M. Schneider, U. Helmersson and I. Petrov, “A novel pulsed magnetron sputter technique utilizing very high target power densities”, Surface and Coatings Technology, vol. 122, pp. 290-293, 1999.
    [26]A. Ehiasarian, W.-D. Münz, L. Hultman, U. Helmersson, and I. Petrov, “High power pulsed magnetron sputtered CrNx films”, Surface and coatings technology, vol. 163, pp. 267-272, 2003.
    [27]J. A. Thornton, "Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings," Journal of Vacuum Science and Technology, vol. 11, pp. 666-670, 1974.
    [28]A. Anders, "A structure zone diagram including plasma-based deposition and ion etching," Thin Solid Films, vol. 518, pp. 4087-4090, 2010.
    [29]J. D. Verhoeven, “Fundamentals of Physical Metallurgy”, Wiley, New York, 1975, p. 326
    [30]X. Su, L. Wang, Y. Lu, Y. Gan and R. Wang, “The effect of thermal annealing on (In2O3)0.75(Ga2O3)0.1(ZnO)0.15 thin films with high mobility”, Vacuum, vol. 107, pp. 191-194, 2014.
    [31]G. Shanker, P. Prathap, K.M.K. Srivatsa and P. Singh, “Effect of balanced and unbalanced magnetron sputtering processes on the properties of SnO2 thin films”, Current Applied Physics, vol. 19, pp. 697-703, 2019.
    [32]S. M. Rossnagel, J. J. Cuomo, and W. Westwood, Handbook of Plasma Processing Technology: Fundamentals, Etching, Deposition, and Surface Interactions, Materials Science and Process Technology, Berkshire, UK: Noyes: Noyes Publications, 1990.
    [33] L. Shenchang Electric Co. (2018). SPIK2000A Tutorial PPST. Available: https://www.shenchang.com.tw/sara/SPIK2000A%20Tutorial%20PPST.pdf
    [34]K. Sarakinos,J. Alami and S. Konstantinidis, “High power pulsed magnetron sputtering: A review on scientific and engineering state of the art”, Surface and Coatings Technology, vol. 204, pp. 1661-1684, 2010.
    [35]Available:http://ezphysics.nchu.edu.tw/prophys/basicexp/expnote/hall/hall_97Feb.pdf
    [36]林麗娟,「X光繞射原理及其應用」,工業材料,第86期,100-109頁,2000。
    [37]Available:http://web1.knvs.tp.edu.tw/AFM/ch4.htm
    [38]林昆霖,「肉眼看不見的奈米級材料及元件檢測分析就靠穿透式電子顯微鏡」,國家奈米元件實驗室奈米通訊,第20期,34-38頁,2013
    [39]S. Honda, M. Watamori and K. Oura, “The effects of oxygen content on electrical and optical properties of indium tin oxide films fabricated by reactive sputtering”, Thin Solid Films, vol. 281-282, pp. 206-208, 1996.
    [40]M. C. Martínez-Tomás, D. N. Montenegro, V. Sallet and V. Muñoz-Sanjosé, “High resolution x-ray diffraction methodology for the structural analysis of one-dimensional nanostructures”, Journal of Applied Physics, vol. 112, pp. 014305, 2012.
    [41]陳尚青、許道生、吳威德,「實物現場 X-ray 殘留應力量測及其振 動應力消除技術」,儀科新知,第207期,民國105年6月。
    [42]廖上瑩,「反應式直流脈衝磁控濺鍍法製備氮化鎵薄膜」,國立中央大學,碩士論文,民國108年
    [43]吳哲賢,「偏壓式磁控濺鍍法製作矽異質接面太陽能電池之研究」,國立中央大學,碩士論文,民國103年
    [44]劉佶隴,「射頻磁控濺鍍矽基鍺薄膜及光偵測器光電特性分析」,國立中央大學,碩士論文,民國108年
    [45]N. Kimizuka and S. Yamazaki, “Physics and technology of crystalline oxide semiconductor CAAC-IGZO fundamentals”, Wiley, New York, 2016.

    QR CODE
    :::