跳到主要內容

簡易檢索 / 詳目顯示

研究生: 刁幸芬
Hsing-Fen Tiao
論文名稱: 以聚合硫酸鐵進行污泥調理脫水之綜合效能評估
The Evaluation of Sludge Conditioning and Dewatering Performance with Polymeric Ferric Sulfate
指導教授: 莊順興
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所在職專班
Executive Master of Environmental Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 106
中文關鍵詞: 聚合硫酸鐵污泥酸化調理脫水
外文關鍵詞: polymeric ferric sulfate, Sludge acidification, Sludge conditioning and dehydration
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國內污水處理廠所產出之脫水污泥,一般雖經濃縮、脫水等處理程序,但產出之脫水污泥含水率仍高達85%~89%,未能有效減積減容,且近年來經廢水處理後之污泥處理與處置問題日漸嚴峻,不僅面臨現有最終處置容量近趨飽和,更需支應日益高漲之污泥清運處理龐大支出成本,如何更有效疏緩污泥處理困境亦為污水處理廠的重要課題。
    本研究主要探討,利用聚合硫酸鐵(polyferric sulfate, PFS)對於污泥酸化調理脫水之影響。藉由添加PFS及不同pH值之調理實驗,經毛細汲取時間(CST)、過濾比阻抗(SRF)、含水率等評估指標,來探究其經酸化調理後是否有利於污泥脫水,以降低清運處理之成本。
    綜合實驗結果,藉由硫酸及PFS進行污泥酸化調理脫水試驗,以添加PFS調理至pH值為5時,可得最適之調理效果,亦即能對污泥調理脫水之性質有大幅度的改變。如CST、SRF、含水率等評估項目,都相較優於採用添加硫酸調理所得結果,尤其濃縮污泥在添加PFS調理後,其濾餅厚度顯著降低約57 %,表示其脫水效率提升能形成易脫水的污泥形態,進而大幅減少污泥體積,提升機械脫水設備之運作效率。
    以新竹某工業區污水處理廠為例進行成本評估,110年度脫水污泥濾餅產生量約3,808公噸(以含水率85%估算),總費用約為31,929,124元/年。若於機械脫水處理前,改以PFS進行酸化調理至pH值為5時,推估經機械脫水設備後之污泥濾餅含水率可降低至80 %,進而推算出年度脫水後污泥濾餅產生量約為2,856公噸,亦即每月平均約可減少79.3公噸之污泥產出量。不僅每年可降低約25 %的污泥產出量,亦可減少約9.58 %之相關成本支出。


    Most of the dewatered sludge produced by industrial wastewater treatment plants contains moisture as high as 85% to 89%. Since sludge disposal regulations become strict in recent years, and the existing final disposal capacity is approaching saturation. How to effective alleviate the predicament of sludge treatment is an important issue.
    The purpose of this study is to discuss the effect of chemical conditioning, and specifically the use of polyferric sulfate (PFS) for sludge conditioning and dehydration. The capillary extraction times (CST), specific filtration resistances (SRF), and moisture content are indexes to evaluate the sludge dewatering performance.
    According to the results, when sludge conditioning and dehydrated with PFS at a pH of 5, the conditioning and dewatering properties are changed substantially. For example, the values of CST, SRF, moisture content, etc. are better than those obtained by using sulfuric acid, and the thickness of the sludge filter cake after adding PFS conditioning is reduced about 57%. This means that it can improve the efficiency of the dewatering process to produce a form of sludge that is easier to dewater, as well as reduce the volume of sludge and improve the machine's efficiency.
    The estimated annual dewatered sludge production of this study case is approximately 3,808 metric tons (85% moisture content), with a total annual cost of approximately NT31,929,124 based on the cost assessment. If PFS is used for acidification and conditioning, the pH is adjusted to 5, it is estimated that the moisture content of the sludge after mechanical dehydration can be reduce to 80%. The disposal sludge was reduced to 2,856 metric tons, which equates to an average reduction of about 79.3 metric tons per month. Not only reduce sludge amount by about 25% every year, but also reduce related costs by about 9.58%.

    摘要 ................................................... II ABSTRACT............................................... III 誌 謝 ................................................... V 圖目錄 .................................................. 9 表目錄 ................................................. 11 第一章 緒論 ............................................. 1 1-1 研究緣起 ............................................ 1 1-2 研究動機與目的 ....................................... 3 1-3 研究內容 ............................................ 4 1-3-1 研究流程與架構...................................... 4 第二章 文獻回顧 .......................................... 6 2-1 污泥水份分佈 ......................................... 6 2-2 污泥調理之機制與評估指標.............................. 10 2-2-1 污泥調理機制 ...................................... 10 2-2-2 污泥調理評估指標 ................................... 16 2-2-3 影響污泥調理之因素 ................................. 18 2-3 污泥脫水機制與評估指標 ............................... 20 2-3-1 污泥脫水機制 ...................................... 20 2-3-2 污泥脫水評估指標 ................................... 22 2-3-3 影響污泥脫水之因素 ................................. 24 2-4 聚合硫酸鐵試劑之特性 ................................. 26 第三章 研究方法與材料 .................................... 29 3-1 研究流程 ............................................ 29 3-2 實驗材料與設備 ...................................... 31 3-2-1 實驗材料 ......................................... 31 3-2-2 調理試劑 ......................................... 32 3-2-3 實驗分析設備 ...................................... 33 3-3 實驗分析方法 ........................................ 36 第四章 結果與討論 ....................................... 42 4-1 化學酸化調理效能分析 ................................ 42 4-1-1 污泥CST 之變化 ................................... 42 4-1-2 污泥界達電位之變化 ................................ 45 4-1-3 污泥沉降特性之變化 ................................ 47 4-1-4 溶解性有機物之變化 ................................ 50 4-1-5 化學酸化調理之綜合分析 ............................ 52 4-2 化學酸化調理污泥之脫水效能分析 ....................... 54 4-2-1 初始脫水速率之變化 ................................ 54 4-2-2 污泥含水率之變化 .................................. 56 4-2-3 污泥濾餅結合水含量之變化 ........................... 65 4-2-4 污泥過濾階段SRF 之變化 ............................ 67 4-2-5 化學酸化調理污泥脫水效能之綜合分析 .................. 70 4-3 污泥化學酸化調理脫水之綜合分析 ....................... 73 4-3-1 污泥調理CST 與過濾階段SRF 之變化 ................... 73 4-3-2 污泥調理CST 與濾餅含水率之變化 ..................... 75 4-3-3 污泥過濾階段SRF、濾餅含水量與濾液有機物濃度之變化 .... 78 4-4 污泥化學調理成本效益分析.............................. 84 第五章 結論與建議 ....................................... 87 5-1 結論 ............................................... 87 5-2 建議 ............................................... 88 參考文獻 ............................................... 89

    朱敬平,污泥膠羽結構、脫水性、水份分佈、與熱分解特性之研究,碩士論文,國立台灣大學化學工程學系,1999年。
    林志麟,酸化處理對染整化學污泥減量及其脫水性之影響,碩士論文,淡江大學水資源及環境工程學系,2003年。
    曾迪華,工業污染防治技術手冊14-污泥脫水處理,1992年。
    曾維忞,廢有機污泥減量與資源化處理技術,工業污染防治,NO.131,2015年,135-146頁。
    張任考,高分子凝聚劑對壓濾式脫水效能之影響,碩士論文,國立雲林科技大學環境與安全衛生工程學系,2013年。
    張維欽,鄭光宏,劉志成,廢棄富磷生物污泥與鋁鹽污泥共調理之研究,第十四屆下水道與水環境再生研討會論文集,台灣水環境再生協會。2004年。
    黃志彬,以低溫處理提昇污泥調理脫水效率之研究,行政院國家科學委員會專題研究計畫成果報告,國立交通大學環工所,台北,2000年。
    劉志成,混和污泥之調理脫水行為之研究,行政院國家科學委員會專題研究計畫成果報告,國立台灣工業技術學院化學工程技術系,台北,1998年。
    環保署環境保護許可管理資訊系統,https://ems.epa.gov.tw/
    Apul O. Güven, Atalar Ilgin and Zorba Gözde T., et al., “The dewaterability of disintegrated sludge samples before and after anaerobic digestion”, Taylor & Francis, Dry. Technol., Vol.28, 2010, pp.901–909.
    Bache D.H. and Zhao Y.Q., “Optimising polymer use in alum sludge conditioning: an ad hoc test”, J. Water Supply, Vol.50(1), 2001, pp.29-38

    Chang I. L., Chu C. P. and Lee D. J., et al., “Expression dewatering of alum-coagulated clay slurries”, J. Environ. Sci. Technol., Vol.31, 1997, pp.1313-1319
    Chen Yinguang, Yang Haizhen and Gu Guowei “Effect of acid surfactant treatment on activated sludge dewatering and settling”, Water Res., Vol.35(11), 2001, pp.2615–2620.
    Cheng Wen Po, “Hydrolysis characteristic of polyferric sulfate coagulant and its optimal condition of preparation”, J. Physicochemical and Eng., Vol.182, 2001, pp.57-63
    Chu C. P., Lee D. J. and Chang C. Y., “Energy demand in sludge dewatering”, J.Water Res., Vol.39, 2005, pp.1858-1868
    Fan Maohong, Sung Shihwu, M.ASCE P.E., and Brown Robert C., et al., “Synthesis, characterization and coagulation performance of polymeric ferric sulfate”, J. Environ. Eng. Vol.128(6), 2002, pp.483-490
    Jiang J-Q. and Graham N. J. D., “Observations of the comparative hydrolysis/precipitation behavior of polyferric sulphate and ferric sulphate”, Water Res., Vol.32(3), 1998, pp.930-935
    Lee D. J. and Hsu Y. H., “Measurement of bound water in sludges: a comparative study”, J. Water Environ. Res., Vol.67(3), 1995, pp.310-317
    Liang Zhen, Wang Yanxin and Zhou Yu, et al., “Hydrolysis and coagulation behavior of polyfeeric sulfate and feeric sulfate”, IWA. Water Science & Technology, Vol.59(6), 2009, pp.1129-1135
    Lu Yi, Zheng Guanyu, and Wu Wenzhu et al., “Significances of deflocculated sludge flocs as well as extracellular polymeric substances in influencing the compression dewatering of chemically acidified sludge”, J. Separation and Purification Technology, Vol.176, 2017, pp.243-251.
    Mikkelsen L. H., Gotfredsen A. K. and Agerbak M. L., et al., “Effect of colloidal stability on clarification and dewatering of activated sludge”, Water Sci. Tech., Vol.34(3), 1996, pp.449-457
    O’Brien James H. and Novak John T., “Effects of pH and Mixing on Polymer Conditioning of Chemical Sludge”, J. Water Technology, 1977, pp.600-605
    Qian Jie, Tang Yuchao, and Zhang Qianqian, “Effects of acid-heat combined treatment on sludge dewatering performance at low temperature”, ICBTE, Vol.136, 2019.
    Raynaud Mickael, Vaxelaire Jean and Loivier Jérémy et al., “Compression dewatering of municipal activated sludge: effects of salt and pH”, Water Res., Vol.46, 2012, pp.4448–4456.
    Sawyer Clair N., McCarty Perry L. and Parkin Gene F., “Chemistry for Environmental Engineerng and Science”, Chaprer 7, McGraw-Hill, Inc., New York, 1994
    Vesilind P. Aarne and Martel C. James, “Freezing of Water and Wastewater Sludge”, J. Envir.Eng., ASCE, Vol.116(5), 1990, pp.854-862.
    Vesilind P. Aarne, “The role of water in sludge dewatering”, Water Environ. Res, Vol.66(1), 1994, pp.4-11.
    Vesilind P. Aarne and Davis Hal A., “Using the Capillary Suction Time Device for Characterizing Sludge Dewaterability”, Wat. Sci. Tech., Vol.20(1), 1988, pp.203-205.

    QR CODE
    :::