| 研究生: |
吳倚彤 Yi-Tung Wu |
|---|---|
| 論文名稱: |
宜蘭冬季降水低層環流特性: 系集模擬與多元觀測整合分析 Low-Level Circulation Features of Winter Precipitation in Yilan: A Case Study by Ensemble Simulations and Integrated Observations |
| 指導教授: | 鍾高陞 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣科學學系 Department of Atmospheric Sciences |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 宜蘭冬季強降水實驗 、系集模擬 |
| 相關次數: | 點閱:193 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究藉由分析2021年宜蘭平原冬季降水事件中系集模擬成員之表現,進一步了解導致宜蘭平原地區強降水的關鍵因素。此外,運用多都卜勒雷達風場合成(WISSDOM)及多種觀測資料(包括無人機、剖風儀、微型探空等),並採用K-means分群方法將各個系集成員依照宜蘭地區降水極值位置進行空間上的分類,以分析不同群集之間的風場結構、降水分布及其不確定性。
研究結果顯示,降水預報表現最佳的群集並不一定能準確地捕捉降雨事件期間的動力結構,而最能重現觀測中降水演變過程的群集,並不一定能夠產生最佳的降水量。此外,從分群結果中,第二群能夠較準確地捕捉到降水先增後減的變化趨勢,尤其是在降水事件的後期,當東北風進入平原後產生地形下沉作用,進而引發西風出現並抑制降水。相較之下,第三群與第四群雖然產生的總雨量較接近觀測,但其空間分布有所差異,與底層風場強度與低層環流結構不同有關;而第一群則因為環境偏冷且水氣量少,因此降水最弱。本研究指出,即便降水總量相似,其背後的動力結構可能截然不同。因此,在探討像宜蘭這樣複雜地形區的降水機制時,除了累積降水量外,亦應評估低層水氣與風場、環流結構的交互作用,才能更全面地掌握降水的發展過程。
This study analyzes performance of ensemble members in the 2021 winter severe precipitation event over Yilan using the Wind Synthesis System using Doppler Measurements (WISSDOM) and various observational data (Unmanned Aerial Vehicle, Wind Profiler, Storm Tracker, etc.). K-means clustering spatially classifies ensemble members based on the location of precipitation extreme value to analyze wind field structure, precipitation distribution, and uncertainties among clusters.
Results show that clusters with the best precipitation performance do not necessarily capture dynamic structures accurately, while those reproducing observed precipitation evolution may not produce optimal amounts. Cluster 2 best captured the precipitation increase-decrease pattern, particularly when northeasterly winds generated orographic subsidence and westerly return flow that suppressed precipitation. Clusters 3 and 4 produced rainfall amounts closer to observations but with different spatial distributions due to varying low-level wind intensity and circulation structures. Cluster 1 showed weakest precipitation under colder, drier conditions.
The study demonstrates that similar precipitation totals can result from fundamentally different dynamic structures. Therefore, investigating precipitation mechanisms in complex terrain requires analyzing low-level wind fields and local circulation structures beyond accumulated precipitation amounts to comprehensively understand precipitation development processes.
Alhamed, A., S. Lakshmivarahan, and D. J. Stensrud, 2002: Cluster Analysis of Multimodel Ensemble Data from SAMEX. Monthly Weather Review, 130, 226–256.
Chang, Y., W. Chen, C. Wu, Y. Kuo, and J. D. Neelin, 2023: Identifying the Deep‐Inflow mixing features in Orographically‐Locked diurnal convection. Geophysical Research Letters, 50.
Chen, C.-H., K.-S. Chung, S.-C. Yang, L.-H. Chen, P.-L. Lin, and R. D. Torn, 2021: Sensitivity of Forecast Uncertainty to Different Microphysics Schemes within a Convection-Allowing Ensemble during SoWMEX-IOP8. Monthly Weather Review, 149, 4145–4166.
Du, Y., and G. Chen, 2018: Heavy Rainfall Associated with Double Low-Level Jets over Southern China. Part I: Ensemble-Based Analysis. Monthly Weather Review, 146, 3827–3844.
Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon
Experiment using a mesoscale two–dimensional model. J. Atmos. Sci., 46, 3077–3107.
Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Monthly Weather Review, 129, 2461–2480.
Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection
combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29(14).
Hong, S.–Y., and J.–O. J. Lim, 2006: The WRF single–moment 6–class microphysics
scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.
Hwang, W.-C., P.-H. Lin, and H. Yu, 2020: The development of the “Storm Tracker” and its applications for atmospheric high-resolution upper-air observations. Atmospheric Measurement Techniques, 13, 5395–5406.
Jeng, P.-D., and J.-P. Hou, 2024: Effects of the Northeast monsoon on different terrain of the Taipei Basin and Lanyang Plain in Taiwan. Atmosphere, 15, 1527.
Johnson, A., X. Wang, F. Kong, and M. Xue, 2011a: Hierarchical Cluster Analysis of a Convection-Allowing Ensemble during the Hazardous Weather Testbed 2009 Spring Experiment. Part I: Development of the Object-Oriented Cluster Analysis Method for Precipitation Fields. Monthly Weather Review, 139, 3673–3693.
Johnson, A., X. Wang, F. Kong, M. Xue, and F. Kong, 2011b: Hierarchical Cluster Analysis of a Convection-Allowing Ensemble during the Hazardous Weather Testbed 2009 Spring Experiment. Part II: Ensemble Clustering over the Whole Experiment Period. Monthly Weather Review, 139, 3694–3710.
Kohonen, T., 1982: Self-organized formation of topologically correct feature maps. Biological Cybernetics. 43, 59–69.
Lin, Y.-F., C.-C. Wu, T.-H. Yen, Y.-H. Huang, and G.-Y. Lien, 2019: Typhoon Fanapi (2010) and its Interaction with Taiwan Terrain – Evaluation of the Uncertainty in Track, Intensity and Rainfall Simulations. Journal of the Meteorological Society of Japan Ser II, 98, 93–113.
Liou, Y.-C., and Y.-J. Chang, 2009: A Variational Multiple–Doppler Radar Three-Dimensional Wind Synthesis Method and its impacts on thermodynamic retrieval. Monthly Weather Review, 137, 3992–4010.
Liou, Y.-C., S.-F. Chang, and J. Sun, 2011a: An Application of the Immersed Boundary Method for Recovering the Three-Dimensional Wind Fields over Complex Terrain Using Multiple-Doppler Radar Data. Monthly Weather Review, 140, 1603–1619.
Liou, Y.-C., S.-F. Chang, and J. Sun, 2011b: An Application of the Immersed Boundary Method for Recovering the Three-Dimensional Wind Fields over Complex Terrain Using Multiple-Doppler Radar Data. Monthly Weather Review, 140, 1603–1619.
Liou, Y.-C., Chiou, J.-L., Chen, W.-H., & Yu, H.-Y. (2014). Improving the Model
Convective Storm Quantitative Precipitation Nowcasting by Assimilating State Variables Retrieved from Multiple-Doppler Radar Observations. Monthly Weather Review, 142(11), 4017- 4035.
Lorenz, E. N., 1963: SECTION OF PLANETARY SCIENCES: THE PREDICTABILITY OF HYDRODYNAMIC FLOW*,†. Transactions of the New York Academy of Sciences, 25, 409–432.
MacQueen, J. B., 1967: Some methods for classification and analysis of multivariate observations. Proc. Of the 5-th Berkeley Symp. On Math. Stat. And Prob., 1, 281–297.
Mlawer, Eli. J., Steven. J. Taubman, Patrick. D. Brown, M. J. Iacono, and S. A.
Clough,1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated–k model for the longwave. J. Geophys. Res., 102, 16663–16682.
O’Brien, 1970: A Note on the Vertical Structure of the Eddy Exchange Coefficient in the Planetary Boundary Layer. J. Atmos. Sci., 27, 1213–1215.
Su, S., and Coauthors, 2022: Observing severe precipitation near complex topography during the Yilan Experiment of Severe Rainfall in 2020 (YESR2020). Quarterly Journal of the Royal Meteorological Society, 148, 1663–1682.
Tao, Wei–Kuo, Joanne Simpson, Michael McCumber, 1989: An Ice–Water Saturation
Adjustment. Mon. Wea. Rev., 117, 231–235.
Tao, W.-K., D. Wu, S. Lang, J.-D. Chern, C. Peters-Lidard, A. Fridlind, and T. Matsui,
2016: High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and obser- vations. J. Geophys. Res. Atmos., 121, 1278–1305.
Teng, H.-F., C.-S. Lee, H.-H. Hsu, J. M. Done, and G. J. Holland, 2019: Tropical Cloud cluster environments and their importance for tropical cyclone formation. Journal of Climate, 32, 4069–4088.
Tracton, M. S., and E. Kalnay, 1993: Operational Ensemble Prediction at the National Meteorological Center: Practical aspects. Weather and Forecasting, 8, 379–398.
Wang, C.-C., M.-S. Li, C.-S. Chang, P.-Y. Chuang, S.-H. Chen, and K. Tsuboki, 2021: Ensemble-based sensitivity analysis and predictability of an extreme rainfall event over northern Taiwan in the Mei-yu season: The 2 June 2017 case. Atmospheric Research, 259, 105684.
Xian, T., J. Guo, R. Zhao, T. Su, and Z. Li, 2023: The impact of urbanization on mesoscale convective systems in the Yangtze River Delta region of China: Insights gained from observations and modeling. Journal of Geophysical Research Atmospheres, 128.
Yussouf, N., D. J. Stensrud, and S. Lakshmivarahan, 2004: Cluster Analysis of Multimodel Ensemble Data over New England. Monthly Weather Review, 132, 2452–2462.
樺澤實, 1950: 第2種地形性降雨の実例について. 中央気象台研究時報, 2(3), 65–69。
簡芳菁、柳懿秦、周仲島、林沛練、洪景山、蕭玲鳳, 2005: 2003年梅雨季MM5系集降水預報.大氣科學, 33(3), 255–275。
李志昕, and 洪景山, 2014: 區域系集預報系統研究:系集成員產生方式之評估.
大氣科學, 42(2), 153–179。
黃椿喜, 葉世瑄, 呂國臣, and 洪景山, 2016: 系集定量降水預報方法之探討與分析-系集平均、機率擬合平均與超越機率之定量降水預報.大氣科學, 44(2), 173–196。
黃麗蓉、林冠伶、王潔如、陳奕如、朱容練、林欣弘、于宜強, 2021: 系集 2.0 實驗平台簡介. 國家災害防救科技中心災害防救電子報, 197。
賴曉薇、蘇奕叡、吳英璋、陳思穎、陳文柔、徐驊、蔡金成、羅翊銓、張保亮、洪景山, 2022: 梅雨期間WEPS系集模式降水預報的分群特性及合成天氣分析的應用. 氣象學報, 57(3), 1–21。
王聖翔, 柯立晉, 潘巧玲, 劉豪聯, 李育棋, 游志淇, and 邱思翰, 2023: 新一代低層大氣無人機探空系統. 前瞻科技與管理, 12(1), 38–59。
陳盈曄, 2000: 宜蘭地區秋冬季降雨特性之研究 (碩士論文). 國立中央大學,桃園。
葉嘉靜, 2003: 宜蘭地區秋冬季豪大雨特性之研究 (碩士論文). 國立中央大學,
桃園。
張耀升, 2004: 宜蘭地區豪雨個案之研究 (博士論文). 國立中央大學,桃園。
陳奕安, 2019: 多都卜勒氣象雷達反演之垂直速度的 剖風儀驗證及高解析度三維
風場反演 能力的測試 (碩士論文). 國立中央大學,桃園。
陳昭宇, 2019: 多頻段剖風儀雷達觀測結果之比對與分析 (碩士論文). 國立中央大學,桃園。
蘇世顥、劉清煌(2021),2020 年宜蘭劇烈降雨實驗(2020 YESR)簡介,氣象學會 62 期會刊專題。
蔡沛蓉, 2022: Extreme Heavy Rainfall Event on 01-02 June 2017 over Northern Taiwan Area: Analysis of Radar Observation and Ensemble Simulations (碩士論文). 國立中央大學,桃園。
吳若瑜, 2023: 東北季風環境下宜蘭冬季降雨特徵之地形效應 (碩士論文). 國立臺灣大學,台北。
洪琳, 2023: 2020年宜蘭劇烈降雨實驗期間降雨分布特徵與豪大雨形成機制的探討 (碩士論文). 國立中央大學,桃園。
張沁全, 2023: 同化雙偏極化雷達差異反射率之方法與影響評估:2021 年宜蘭降雨觀測實驗 IOP2 個案分析 (碩士論文). 國立中央大學,桃園。
吳孟杰, 2024: 使用四維變分資料同化系統研究 2021 年宜蘭實驗 (YESR)期間的強降水事件 (碩士論文). 國立中央大學,桃園。
劉豪聯, 2024: 宜蘭地形迴流與冬季降雨機制–無人機觀測與分析 (碩士論文). 國立中央大學,桃園。