跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭廷宇
Ting-yu Guo
論文名稱: 溫度效應下高速公路柔性鋪面車轍損傷模擬
Rutting analysis of highway flexible pavement in temperature effect
指導教授: 張瑞宏
Jui-Hung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 88
中文關鍵詞: 車轍力學-經驗準則
外文關鍵詞: Mechanics-Empirical Pavement Design Guide, rutting
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣位處與亞熱帶,高溫多雨的氣候特性,易對鋪面材料強度與勁度造成損傷,進而影響鋪面之服務品質與年限,並且因重車載重能力之提供,也給予鋪面更大的損傷。
    本研究採用典型國道斷面,搭配有限元素計算工具ABAQUS,並根據AASHTO 2008 暫行版「力學-經驗鋪面設計準則」進行相關車轍之模擬評估。並於模擬中導入實際溫度與實際交通量之因素,以期更能符合實際國道之車轍破壞情形。
    由分析結果顯示,高溫季與高溫時段造成車轍量占全年度車轍量之53%與68%,顯示瀝青材料在高溫時之強度與勁度下降之情形,由此可知高溫亦是造成鋪面損害重要因素之一。
    導入實際交通量之計算結果顯示,軸重較重之T4車型與交通量較高之T2車型為造成鋪面車轍損害之主要車型。


    Situated geographically in the tropical zone, Taiwan is characterized by its humid subtropical climate which not only causes damage to the strength and stiffness of the pavement material, but also influences its service quality and service year; what’s more, the upgrading of heavy duty vehicles causes further damage to the pavement.
    In this study, the rutting analysis will be proceeded based on the highway cross section with finite element analysis program “ABAQUS” and the AASHTO 2008 “Mechanics-Empirical Pavement Design Guide.”Also, the real temperature and real traffic factors are involved in the analysis, in hopes that the result conforms to the real highway rutting damage.
    According to the results of analysis, the rutting which take the high temperature season and the high temperature time are of 53% and 68% respectively out of an entire year. Such results show that the strength and stiffness of asphalt material reduce when the temperature increases. Therefore, the high temperature is one of the important factors of rutting damage.
    Judging by the results of analysis, the T4 vehicle type with heavy axle load and the T2 vehicle type with high traffic are mains vehicles types which cause the rutting damage to the pavement.

    摘要 I ABSTRACT II 致謝 III 目錄 VI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究方法與流程 3 第二章 文獻回顧 5 2.1 柔性鋪面 5 2.1.1 柔性鋪面種類 5 2.1.2 柔性鋪面破壞原因及型態 6 2.2 鋪面力學分析之背景 11 2.2.1 彈性理論 11 2.2.2 鋪面分析程式KENLAYER之簡介 13 2.2.3 有限元素於柔性鋪面之應用 14 2.2.4 有限元素程式ABAQUS之簡介 15 2.2.5 柔性鋪面幾何模擬 15 2.2.6 邊界條件 16 2.2.7 重車之車輪荷載 16 2.2.8 鋪面材料在ABAQUS上永久變位行為之應用 18 2.3 柔性鋪面破壞模式 19 2.3.1 車轍破壞模式 20 2.3.2 疲勞破壞模式 22 2.4 AASHTO柔性鋪面設計方法 25 2.4.1 研究發展背景 25 2.4.2 AASHTO 2008 新設計準則理念 27 2.5 AASHTO 2008 柔性鋪面破壞分析之預測模式 28 2.5.1 車轍破壞分析模式 28 2.5.2 動態模數理論 32 2.5.3 瀝青混凝土動態模數主曲線 34 2.5.4 疲勞裂縫分析模式 38 第三章 鋪面模型建立與溫度、交通量分布特性 44 3.1 鋪面模型建立 44 3.1.1 鋪面模型材料性質 44 3.1.2 鋪面模型邊界條件 46 3.1.3 鋪面模型車輪載重 47 3.1.4 對移動載重與靜態載重之比較 49 3.2 溫度分布資料 50 3.2.1 季節與時段之分類與代表溫度 50 3.2.2 高速公路鋪面溫度分布 51 3.3 高速公路交通量分布特性 54 3.3.1 高速公路重車交通量 54 3.3.2 高速公路重車載重 56 3.3.3 高速公路重車胎壓與軸型 59 第四章 有限元素法計算分析流程 61 4.1 Abaqus CAE面模型之建立 61 4.2 Fortran副程式之簡介 67 4.3 各層車轍之計算 68 4.3.1 面層車轍之計算 68 4.3.2 瀝青處理底層車轍計算 69 4.3.3 基層車轍計算 70 4.3.4 路基土壤之車轍計算 71 4.4 鋪面結構之永久變位 71 第五章 鋪面車轍之計算分析結果 73 5.1 全年度各車型車轍之分析比較 73 5.2 各溫季與時段車轍分析 80 5.3 鋪面車轍總量計算與探討 84 第六章 結論與建議 87 6.1 結論: 87 6.2 建議 88 參考文獻 i

    交通部台灣區國道新建工程局 (1996),「台灣地區柔性路面厚度設計手冊研擬」。
    張永生 (2002),「柔性鋪面之績效評估與非均佈荷重效應」,國立中央大學土木工程研究所,碩士論文。
    李旻霖 (2003),「柔性鋪面承載之非線性分析」,國立中央大學土木工程研究所,碩士論文。
    宋侑玲 (2003),「重載交通荷重對路面損壞分析模式之建立」,博士論文,國立中央大學土木工程研究所。
    李勝雄 (2004),「鋪面材料回彈行為於車轍與疲勞破壞之影響評估」,國立中央大學土木工程研究所,碩士論文。
    李奇瑋 (2007),「反覆載重下鋪面之車轍損傷評估」,碩士論文,國立中央大學土木工程研究所。
    陳柏瑞 (2008),「落錘式撓度儀於台灣國道鋪面撓度校估模式之建立」,碩士論文,國立中央大學土木工程研究所。
    廖小媛 (2009),「以力學-經驗準則探討溫度與重車載重對高速公路柔性鋪面之影響」,碩士論文,國立中央大學土木工程研究所。
    蔡攀鰲 (2003),公路工程學,鵬逞實業有限公司。
    AASHTO (1972). AASHTO Interim guide for the design of flexible pavement structure. American Association of State Highway and Transportation Officials, Washington D.C.
    AASHTO (1986). AASHTO Guide for design of pavement structures. American Association of State Highway and Transportation Officials, Washington D.C.
    AASHTO (1993). AASHTO Guide for design of pavement structures. American Association of State Highway and Transportation Officials, Washington D.C.
    AASHTO (2008). Mechanistic-Empirical Pavement Design Guide, Interim Edition. American Association of State Highway and Transportation Officials, Washington D.C.
    Andrei, D., Witczak, M. W., and Mirza, M. W (1999). “Development of Revised Predictive Model for the Dynamic (Complex) Modulus of Asphalt Mixtures”. Development of the 2002 Guide for the Design of New and Rehabilitated Pavement Structures, NCHRP 1-37A. Interim Team Technical Report.Department of Civil Engineering, University of Maryland of College Park, MD.
    ARA, Inc., ERES Consultants Division (2004). Guide for Mechanistic- Empirical Design of New and Rehabilitated Pavement Structures. “Appendix GG-1: Calibration of permanent deformation models for flexible pavements”, NCHRP Project 1-37A, February.
    ARA, Inc., ERES Consultants Division (2004). Guide for Mechanistic- Empirical Design of New and Rehabilitated Pavement Structures. “Chapter 3: Design of new and reconstructed flexible pavement”, NCHRP Project 1-37A, March.
    ARA, Inc., ERES Consultants Division (1999). Guide for Mechanistic- Empirical Design of New and Rehabilitated Pavement Structures. “Appendix CC-4: Development of a Revised Predictive Model for the Dynamic (Complex) Modulus of Asphalt Mixtures ”, NCHRP Project 1-37A, March.
    ARA, Inc., ERES Consultants Division (1999). Guide for Mechanistic- Empirical Design of New and Rehabilitated Pavement Structures. “Appendix II-1: Calibration of Fatigue Cracking Models for Flexible Pavements”, NCHRP Project 1-37A, March.
    Asphalt Institute (1981). Thickness Design - Asphalt Pavement for Highways and Streets. Ninth, Manual Series No.1 (MS-1), The Asphalt Institute.
    Ayres, M. and Witczak, M. (1998) “AYMA – A Mechanistic Probabilistic System to Evaluate Flexible Pavement Performance”, Transportation Research Board, 77th Annual Meeting, Paper No.980738, Washington, D.C.
    Dougan, C. E., Stephens, J. E., Mahoney, J., and Hansen, G. (2003). “E*-Dynamic Modulus. Test Protocol-Problems and Solutions.” Report No. CT-SPR-0003084-F-03-3. University of Connecticut, Storrs, CT.
    FHWA, ”Distress identification manual for the Long-Term Pavement Performance Program,” Publication NO. FHWA –RD-03-031,2003.
    Garcia, G. and Thompson, M. (2007). “HMA Dynamic Modulus Predictive Models-A Review.” Research Report FHWA-ICT-07-005, Illinois Center for Transportation.
    Hajek, J.J., Selezeva, O., Jiang, J. Y. and Mladenovic, G. (2002). “Improving the Reliability of Pavement Loading Estimates Using the Pavement Loading Guide.” Proceedings of 81th annual meeting of Transportation Research Board, Washington D. C..
    Harichandran, R.S., Buch, N. and Baladi, G. T. (2001). “Flexible Pavement design in Michigan - Transition from Empirical to Mechanistic Methods.” Transportation Research Record 1778, 100-106.
    HRB (1962). The AASHTO Road Test . Report 5, Pavement Research, Special Report 61 E, Publication No. 954, Nation Academy of Seiences-Nation Research Council.
    Huang, Y. H. (1993). Pavement Analysis and Design, Second Edition. Prentice Hall, Englewood Cliffs, New Jersey.
    Hudson, S. W., and Seeds, S.B. (1988). “Evaluation of increased pavement loading and tire pressures ,” Transportation Research Record, Vol. 1207, 197-206.
    Kaloush, K. E. and Witczak, M. W. (2000). “Development of a Permanent to Elastic Strain Ratio Model for Asphalt Mixtures”. Development of the 2002 Guide for the Design of New and Rehabilitated Pavement Structures. NCHRP 1-37 A. Inter Team Technical Report. Sept.
    Leahy, R.B. (1989). “Permanent Deformation Characteristics of Asphalt Concrete.” Ph.D. Dissertation, University of Maryland, College Park.
    Pellinen, T.K., and Witczak, M.W. (2002). “Stress Dependent Master Curve Construction for Dynamic (Complex) Modulus.” Journal of the Association of Asphalt Paving Technologists, Volume 71. Colorado Spring, CO.
    Pellinen, T.K., Witczak, M.W., and Bonaquist, R.F. (2002). “Asphalt Mix Master Curve Construction Using Sigmoidal Fitting Function with Non-Linear Least Squares Optimization.” Proceedings of the Pavement Mechanics Symposium at the 15th ASCE Engineering Mechanics Conference (EM2002). Columbia University, New York, NY.

    QR CODE
    :::