跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴庚辛
Keng-Hsin Lai
論文名稱: 模擬飽和孔隙介質中化學溶解反應波前之型態發展
Simulated Morphological Evolution of Chemical Dissolution Fronts in a Fluid-Saturated Porous Medium
指導教授: 陳瑞昇
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 66
中文關鍵詞: 孔隙率反應波前滲透係數異向性
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 孔隙介質礦物內之反應化學傳輸造成地下流體流動型態改變與化學溶解反應波前的發展,對地球科學、石油工業與環境工程等都是一個重要的研究領域。數值模式為研究相關現象常用的工具,在這些模式中分別使用不同滲透係數-孔隙率模式描述孔隙率與滲透係數兩者間的關係,然而並無實驗數據證明何者較為合適;過去模式發展多考慮孔隙介質礦物之滲透係數為等向性,然而在自然孔隙介質礦物中滲透係數多存在異向性與異質性。本研究分別探討:(1)滲透係數-孔隙率模式;(2)滲透係數異向性對化學溶解反應波前型態發展之影響。第一部分結果顯示使用修正型Fair-Hatch模式與Kozeny-Carman模式預測到相似的孔隙率反應波前型態發展,而使用Verma-Pruess模式獲得較低的第一與第二臨界地下水上游壓力梯度。第二部份結果顯示在地下水上游壓力梯度較低時,滲透係數異向性主導側向流體捕捉進而影響流體集中機制,顯著改變形成單指狀波前的第一臨界地下水上游壓力梯度,然而滲透係數異向性對反應波前的影響隨著地下水上游壓力梯度增加而降低,形成雙指狀波前的第二臨界地下水上游壓力梯度未受到顯著的影響。


    The formation of dissolution-induced finger patterns in geological media is an important issue in a varity of geological settings and industrial applications. Numerical models have been developed to investigate the morphological evolution of chemical dissolution fronts within a fluid-saturated porous medium. In these numerical models, the properties that govern fluid flow through the geological medium are porosity and permeability, which may change in time and space due to mineral dissolution. To describe simultaneous changes in permeability and porosity induced by mineral dissolution, the permeability-porosity model has been incorporated into the numerical model. Several permeability-porosity models have been proposed but experimental data that justify one is superior from the others are limited. Furthermore, the permeability of geological medium has been considered to be isotropic, even though the permeability anisotropy is more likely to occur in naturally geological medium. Until recently the effect of permeability anisotropy has received little attention. Accordingly, this study attempts to investigate the effects of permeability-porosity models and permeability anisotropy on morphological evolution of a chemical dissolution front. A series of numerical simulation are performed to evaluate the relevant effects on the morphological evolution of a chemical dissolution front. Results show that the morphological evolution is similar in both the modified Fair-Hatch and Kozeny-Carman model. The Verma-Pruess model yields a relatively low primary and secondary critical upstream pressure gradient value owing to the flow-focusing effect enhanced by the stronger dependence of permeability on porosity. Our simulations demonstrate that the choice of the permeability-porosity function plays an important roles on the evolution patterns of the dissolution front. A adequate description of the permeability-porosity relationship may lead to a more realistic simulation of field problems. Capture of lateral flow is significantly influenced by permeability anisotropy ratios, thereby affecting the flow-focusing mechanism. Permeability anisotropy significantly modify the primary upstream pressure gradient. The effects of the permeability anisotropy on the evolution of a chemical dissolution front decrease with an increasing upstream pressure gradient. The difference between chemical dissolution fronts of the two media with permeability anisotropy ratio equal and smaller than unity diminishes when the upstream pressure gradient is large.

    LIST OF FIGURES……………………………………....…………………………..……….v LIST OF ABBREVIATIONS....................................vii LIST OF SYMBOLS………………………………………….………………...…………..viii 1. Introduction…………………………………………………………………………..…1 1.1 Background…………………..……………………………….…..……………………1 1.2 Literature review……………………………………………….…..…………………..3 1.3 Permeability-porosity models…………………………………….…..…..6 1.4 Permeability anisotropy…………………………………………….…..………………8 1.5 Objectives…………………………………………………………….….………...….9 2. Mathematical model…………………………………..………………….……………...12 2.1 Governing equations of the coupled nonlinear system………..................………….....12 2.2 Non-dimensional governing equations………………………………….…………….16 2.3 Solution methods………………………………………………………….…………..17 3. Results and discussions………………………………………………………………..25 3.1 Effect of permeability-porosity models…………………………28 3.1.1 Case I Homogeneous media with single local non-uniformity……….28 3.1.2 Case II Homogeneous media with two local non-uniformities…………..…….30 3.2 Effect of permeability anisotropy……………………………………….31 4. Conclusions………………………………………………………………………………48 References……………………………………………………………………………………50 Appendix……………………………………………………………………………………..55

    Assouline, S., Or, D., 2006. Anisotropy factor of saturated and unsaturated soils. Water
    Resources Research, 42: W12403.
    Békri, S., Thovert, J.F., Adler, P.M., 1995. Dissolution of porous media. Chemical Engineering
    Science, 50(17): 2765-2791.
    Chadam, J., Hoff, D., Merino, E., Ortoleva, P., Sen, A., 1986. Reactive infiltration instabilities.
    IMA Journal of Applied Mathematics, 36(3): 207-221.
    Chadam, J., Ortoleva, P., 1990. Morphological instabilities in physico-chemical systems. Earth-
    Science Reviews, 29(1-4): 175-181.
    Chadam, J., Ortoleva, P., Qin, P., Stamicar, R., 2001. The effect of hydrodynamic dispersion on
    reactive flows in porous media. European Journal of Applied Mathematics, 12(5): 557-
    569
    Chadam, J., Ortoleva, P., Sen, A., 1988. A weakly nonlinear stability analysis of the reactive
    infiltration interface. SIAM Journal on Applied Mathematics, 48(6): 1362-1378.
    Chen, J.S., Liu, C.W., 2002. Numerical simulation of the evolution of aquifer porosity and
    species concentrations during reactive transport. Computers & Geosciences, 28(4): 485-
    499.
    Chen, J.S., Liu, C.W., 2004. Interaction of reactive fronts during transport in a homogeneous
    porous medium with initial small non-uniformity. Journal of Contaminant Hydrology,
    72(1-4): 47-66.
    Chen, J.S., Liu, C.W., Lai, G.X., Ni, C.F., 2009. Effects of mechanical dispersion on the
    morphological evolution of a chemical dissolution front in a fluid-saturated porous
    medium. Journal of Hydrology, 373(1-2): 96-102.
    Chen, W., Ortoleva, P., 1990. Reaction front fingering in carbonate-cemented sandstone. Earth-
    Science Reviews, 29(1-4): 183-198.
    51
    Daccord, G., 1987. Chemical dissolution of a porous medium by a reactive fluid. Physical
    Review Letters, 58(5): 497-482.
    Fredd, N.C., Fogler, H.S., 1988. The kinetics of calcite dissolution in acetic acid solutions.
    Chemical Engineering Science, 53(22): 3863-3874.
    Freedman, V., Ibaraki, M., 2002. Effects of chemical reactions on density-dependent fluid flow:
    on the numerical formulation and the development of instabilities Advances in Water
    Resources, 25(4): 439-453.
    Gaus, I., Azaroual, M., Czernichowski-Lauriol, I., 2005. Reactive transport modeling of the
    impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chemical Geology,
    217: 319-337.
    Hinch, E.J., Bhatt, B.S., 1990. Stability of an acid front moving through porous rock. Journal
    of Fluid Mechanics, 212: 279-288.
    Hoefner, M.L., Fogler, H.S., 1988. Pore evolution and channel formation during flow and
    reaction in porous media. AIChE Journal, 34(1): 45-54.
    Jacob, B., 1972. Dynamic of fluids in porous media. Elsevier, Amsterdam, pp. 764.
    Kalia, N., Balakotaiah, V., 2007. Modeling and analysis of wormhole formation in reactive
    dissolution of carbonate rocks. Chemical Engineering Science, 62(4): 919-928.
    Kalia, N., Balakotaiah, V., 2009. Effect of medium heterogeneities on reactive dissolution of
    carbonates. Chemical Engineering Science, 64(2): 376-390.
    Kang, Q., Zhang, D., Chen, S., 2003. Simulation of dissolution and precipitation in porous
    media. Journal of Geophysical Research, 108: 2505.
    Koenig, R.A., Stubbs, P.B., 1986. Interference testing of a coalbed methane reservoir. The
    unconventional gas technical symposium. Society of petroleum engineers, Texas, USA
    paper 15225.
    Lebron, I., Schaap, M.G., Suarez, D.L., 1999. Saturated hydraulic conductivity prediction from
    52
    microscopic pore geometry measurements and neural network analysis. Water Resources
    Research, 35(10): 3149-3158.
    Noiriel, C., Gouze, P., Bernard, D., 2004. Investigation of porosity and permeability effects
    from microstructure changes during limestone dissolution. Geophysical Research Letters,
    31: L24603.
    Ortoleva, p., Chadam, J., Merino, E., Sen, A., 1987. Geochemical self-organization II: The
    reactive-infiltration instability. American Journal of Science, 287: 1008-1040.
    Ortoleva, P., Merino, E., Moore, C., Chadam, J., 1987. Geochemical self-organization I:
    Reaction-transport feedbacks and modeling approach. American Journal of Science, 287:
    979-1007.
    Pape, H., Clauser, C., Iffland, J., 1999. Permeability prediction based on fractal pore-space
    geometry. Geophysics, 64(5): 1447-1460.
    Pruess, K., Oldenburg, C., Moridis, G., 1999. TOUGH2 user's guide, version 2.0. Lawrence
    Berkeley Laboratory Report LBL-43134. Berkeley, California.
    Renard, F., Gratier, J.P., Ortoleva, P., Brosse, E., Bazin, B., 1998. Self-organization during
    reactive fluid flow in a porous medium. Geophysical Research Letters, 25: 385-388.
    Scheidegger, A.E., 1961. General theory of dispersion in porous media. Journal of Geophysical
    Research, 66(10): 3273-3278.
    Sherwood, J.D., 1987. Stability of a plane reaction front in a porous medium. Chemical
    Engineering Science, 42(7): 1823-1829.
    Steefel, C.I., Lasaga, A.C., 1990. The evolution of dissolution patterns: Permeability change
    due to coupled flow and reaction. In chemical modeling of aqueous systems II (eds. D.
    Melchior and R.L. Bassett), ACS symposium series No. 416, American Chemical Society,
    Washington. 212-225.
    Stewart, M.L., Ward, A.L., Rector, D.R., 2006. A study of pore geometry effects on anisotropy
    53
    in hydraulic permeability using the lattice-Boltzmann method. Advances in Water
    Resources, 29(9): 1328-1340.
    Szymczak, P., Ladd, A.J.C., 2009. Wormhole formation in dissolving fractures. Journal of
    Geophysical Research, 114: B06203.
    Szymczak, P., Ladd, A.J.C., 2011. Instabilities in the dissolution of a porous matrix.
    Geophysical Reserach Letters, 38: L07403.
    Vaughan, P.J., 1987. Analysis of permeability reduction during flow of heated, aqueous fluid
    through westerly granite. In Tsang, C.F. (Ed.), Coupled processes associated nuclear waste
    repositories. Academic Press, New York. 529-539.
    Verma, A., Pruess, K., 1988. Thermohydrologic conditions and silica redistribution near highlevel
    nuclear wastes emplacedin saturated geological formations. Journal of Geophysical
    Research, 93(B2): 1159-1173.
    Weisbrod, N., Alon-Mordish, C., Konen, E., Yechieli, Y., 2012. Dynamic dissolution of halite
    rock during flow of diluted saline solutions. Geophysical Reserach Letters, 39: L09404.
    Witt, K.J., Brauns, J., 1983. Permeability ‐ anisotropy due to particle shape. Journal of
    Geotechnical & Geoenvironmental Engineering 109(9): 1181-1187.
    Wooding, R.A., 1978. Large-scale geothermal field parameters and convection theory. New
    Zealand Journal of Science, 21: 219-228.
    Xin, J., Peirce, A., Chadam, J., Ortoleva, P., 1993. Reactive flows in layered porous media II:
    the shape stability of the reaction interface. SIAM Journal on Applied Mathematics, 53(2):
    319 - 339
    Zhao, C., Hobbs, B.E., Ord, A., 2010. Theoretical analyses of the effects of solute dispersion
    on chemical-dissolution front instability in fluid-saturated porous media. Transport in
    porous media, 84(3): 629-653.
    Zhao, C., Hobbs, B.E., Ord, A., Horbbs, B.E., Peng, S., 2009. Effects of mineral dissolution
    54
    ratios on chemical-dissolution front instability in fluid-saturated porous media Transport
    in Porous Media, 82(2): 317-335.
    Zhao, C., Hobbs, B.E., Ord, A., Hornby, P., Peng, S., 2008b. Effect of reactive surface areas
    associated with different particles shapes on chemical-dissolution front instability in fluidsaturated
    porous medium. Transport in Porous Media, 73(1): 75-94.
    Zhao, C., Hobbs, B.E., Ord, A., Hornby, P., Peng, S., 2008c. Morphological evolution of threedimensional
    chemical dissolution front in fluid-saturated porous media: a numerical
    simulation approach. Geofluids, 8(2): 113-127.

    QR CODE
    :::