| 研究生: |
范國雄 Pham Quoc Hung |
|---|---|
| 論文名稱: |
發光二極管效率下降的數值研究 Numerical study on the efficiency droop in InGaN/GaN Light-Emitting Diodes |
| 指導教授: |
陳志臣
Chen-Jyh Chen |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系在職專班 Executive Master of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 152 |
| 中文關鍵詞: | 發光二極管 、效率下降 |
| 外文關鍵詞: | Efficiency droopo, Phase space filling effect |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於低功耗和高能效,藍光發光二極管已成為替代傳統光源的新解決方案。然而,面臨的最大挑戰之一是效率下降,即隨著注入功率的增加,效率下降。
本文研究了相空間填充效應和電流擁擠效應對LED效率下降的影響。它是通過三維數值模擬預測的。本文還提出了一種改進的休克-里德-里爾霍爾係數公式,用於代表載流子壽命行為。在本文中,InGaN / GaN發光二極管中的傳統電子阻擋層被大小與n-pad相同的圓形代替。使用圓形,集總的在外部有源區域中較高,而在焊盤下方的有源區域中較低。顯然,由於焊盤下方有源區域的大部分發射都被焊盤吸收,因此,具有圓形的LED將具有更高的外部量子效率。
Blue Light-Emitting Diodes has become a new solution to replace the traditional light source due to low power consumption and high energy efficiency. However, one of the most challenges facing is the efficiency droop which is efficiency degradation with higher injected power.
This dissertation investigates the effect of phase-space filling effect and current crowding effect on the efficiency droop of Light-Emitting Diodes. It is predicted by a three-dimensional numerical simulation. This dissertation also suggests a modified formulation of the Shockley-Reed-Hall coefficient, which is proposed to represent the SRH carrier lifetime behavior. In this dissertation, the traditional elec-tron electron-blocking layer in InGaN/GaN light-emitting diodes is re-placed by a circular shaped EBL the same size as the n-pad. With the circular electron-blocking layer, the lumped internal quantum efficiency is higher in the outer active region and lower in the active region under the n-pad. Since most emissions from the active region under the n-pad are absorbed by the n-pad, obviously, the Light-Emitting Diodes with the circular shaped electron blocking layer will have a higher external quantum efficiency.
1. E. F. Schubert, T. Gessmann, and J. K. Kim, Light emitting diodes (Wiley Online Library, 2005).
2. B. Van Zeghbroeck, "Principles of semiconductor devices," Colarado University 34(2004).
3. F.-C. Chiu, "A review on conduction mechanisms in dielectric films," Advances in Materials Science and Engineering 2014(2014).
4. J. Piprek, "Efficiency droop in nitride‐based light‐emitting diodes," physica status solidi (a) 207, 2217-2225 (2010).
5. J. Pankove, E. Miller, and J. Berkeyheiser, "GaN blue light-emitting diodes," Journal of Luminescence 5, 84-86 (1972).
6. L. R. Elias, "High-power, cw, efficient, tunable (uv through ir) free-electron laser using low-energy electron beams," Physical Review Letters 42, 977 (1979).
7. J. Murota, N. Nakamura, M. Kato, N. Mikoshiba, and T. Ohmi, "Low‐temperature silicon selective deposition and epitaxy on silicon using the thermal decomposition of silane under ultraclean environment," Applied physics letters 54, 1007-1009 (1989).
8. S. Sakai, T. Wang, Y. Morishima, and Y. Naoi, "A new method of reducing dislocation density in GaN layer grown on sapphire substrate by MOVPE," Journal of crystal growth 221, 334-337 (2000).
9. Q. Dai, M. F. Schubert, M.-H. Kim, J. K. Kim, E. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, and G. Thaler, "Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities," Applied Physics Letters 94, 111109 (2009).
10. J.-R. Chen, C.-H. Lee, T.-S. Ko, Y.-A. Chang, T.-C. Lu, H.-C. Kuo, Y.-K. Kuo, and S.-C. Wang, "Effects of built-in polarization and carrier overflow on InGaN quantum-well lasers with electronic blocking layers," Journal of Lightwave Technology 26, 329-337 (2008).
11. S. Okur, M. Nami, A. K. Rishinaramangalam, S. H. Oh, S. P. DenBaars, S. Liu, I. Brener, and D. F. Feezell, "Internal quantum efficiency and carrier dynamics in semipolar (2021) InGaN/GaN lightemitting
diodes," Optics Express 25, 2178-2186 (2017).
12. M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, "Origin of efficiency droop in GaN-based light-emitting diodes," Applied Physics Letters 91, 183507 (2007).
13. T. Wei, L. Zhang, X. Ji, J. Wang, Z. Huo, B. Sun, Q. Hu, X. Wei, R. Duan, and L. Zhao, "Investigation of efficiency and droop behavior comparison for InGaN/GaN super wide-well light emitting diodes grown on different substrates," IEEE Photonics Journal 6, 1-10 (2014).
14. Y. Shen, G. Mueller, S. Watanabe, N. Gardner, A. Munkholm, and M. Krames, "Auger recombination in InGaN measured by photoluminescence," Applied Physics Letters 91, 1101 (2007).
15. H.-Y. Ryu, D.-S. Shin, and J.-I. Shim, "Analysis of efficiency droop in nitride light-emitting diodes by the reduced effective volume of InGaN active material," Applied Physics Letters 100, 131109 (2012).
16. J. Hader, J. V. Moloney, and S. W. Koch, "Supression of carrier recombination in semiconductor lasers by phase-space filling," Applied Physics Letters 87, 201112 (2005).
17. B. Monemar and B. Sernelius, "Defect related issues in the “current roll-off” in InGaN based light emitting diodes," Applied Physics Letters 91, 181103 (2007).
18. K. Okamoto, A. Kaneta, Y. Kawakami, S. Fujita, J. Choi, M. Terazima, and T. Mukai, "Confocal microphotoluminescence of InGaN-based light-emitting diodes," Journal of applied physics 98, 064503 (2005).
19. F. Römer and B. Witzigmann, "Effect of Auger recombination and leakage on the droop in InGaN/GaN quantum well LEDs," Optics express 22, A1440-A1452 (2014).
20. E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, "Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes," Applied Physics Letters 98, 161107 (2011).
21. M. Binder, A. Nirschl, R. Zeisel, T. Hager, H.-J. Lugauer, M. Sabathil, D. Bougeard, J. Wagner, and B. Galler, "Identification of nnp and npp Auger recombination as significant contributor to the efficiency droop in (GaIn) N quantum wells by visualization of hot carriers in photoluminescence," Applied Physics Letters 103, 071108 (2013).
22. J. Xie, X. Ni, Q. Fan, R. Shimada, Ü. Özgür, and H. Morkoç, "On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers," Applied Physics Letters 93(2008).
23. J. Liu, J.-H. Ryou, R. Dupuis, J. Han, G. Shen, and H. Wang, "Barrier effect on hole transport and carrier distribution in In Ga N∕ Ga N multiple quantum well visible light-emitting diodes," Applied Physics Letters 93, 021102 (2008).
24. D. S. Meyaard, G.-B. Lin, Q. Shan, J. Cho, E. Fred Schubert, H. Shim, M.-H. Kim, and C. Sone, "Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes," Applied Physics Letters 99, 251115 (2011).
25. C.-K. Li and Y.-R. Wu, "Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs," IEEE Transactions on Electron Devices 59, 400-407 (2012).
26. X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, Ü. Özgür, H. Morkoç, A. Matulionis, T. Paskova, and G. Mulholland, "InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes," Applied Physics Letters 97, 031110 (2010).
27. N. Bochkareva, V. Voronenkov, R. Gorbunov, A. Zubrilov, Y. S. Lelikov, P. Latyshev, Y. Rebane, A. Tsyuk, and Y. Shreter, "Defect-related tunneling mechanism of efficiency droop in III-nitride light-emitting diodes," Applied Physics Letters 96, 133502 (2010).
28. D.-S. Shin, D.-P. Han, J.-Y. Oh, and J.-I. Shim, "Study of droop phenomena in InGaN-based blue and green light-emitting diodes by temperature-dependent electroluminescence," Applied Physics Letters 100, 153506 (2012).
29. A. David and M. J. Grundmann, "Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis," Applied Physics Letters 96, 103504 (2010).
30. A. Laubsch, M. Sabathil, W. Bergbauer, M. Strassburg, H. Lugauer, M. Peter, S. Lutgen, N. Linder, K. Streubel, and J. Hader, "On the origin of IQE‐‘droop’in InGaN LEDs," physica status solidi (c) 6, S913-S916 (2009).
31. M. Deppner, F. Römer, and B. Witzigmann, "Auger carrier leakage in III‐nitride quantum‐well light emitting diodes," physica status solidi (RRL)-Rapid Research Letters 6, 418-420 (2012).
32. K. Chik, "A theoretical analysis of Auger recombination induced energetic carrier leakage in GaInAsP/InP double heterojunction lasers and light emitting diodes," Journal of applied physics 63, 4688-4698 (1988).
33. A. C. Espenlaub, A. I. Alhassan, S. Nakamura, C. Weisbuch, and J. S. Speck, "Auger-generated hot carrier current in photo-excited forward biased single quantum well blue light emitting diodes," Applied Physics Letters 112, 141106 (2018).
34. B. Galler, P. Drechsel, R. Monnard, P. Rode, P. Stauss, S. Froehlich, W. Bergbauer, M. Binder, M. Sabathil, and B. Hahn, "Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111) silicon substrates," Applied Physics Letters 101, 131111 (2012).
35. B. Hahn, B. Galler, and K. Engl, "Development of high-efficiency and high-power vertical light emitting diodes," Japanese Journal of Applied Physics 53, 100208 (2014).
36. D. Deppe, "Epitaxial mode-confined vertical cavity surface emitting laser (VCSEL) and method of manufacturing same," (Google Patents, 2005).
37. H. Fu, Z. Lu, and Y. Zhao, "Analysis of low efficiency droop of semipolar InGaN quantum well light-emitting diodes by modified rate equation with weak phase-space filling effect," AIP Advances 6, 065013 (2016).
38. A. David and M. J. Grundmann, "Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes," Applied Physics Letters 97, 033501 (2010).
39. P. Tian, J. J. McKendry, J. Herrnsdorf, S. Watson, R. Ferreira, I. M. Watson, E. Gu, A. E. Kelly, and M. D. Dawson, "Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes," Applied Physics Letters 105, 171107 (2014).
40. D.-P. Han, J.-I. Shim, and D.-S. Shin, "Analysis of carrier recombination dynamics in InGaN-based light-emitting diodes by differential carrier lifetime measurement," Applied Physics Express 10, 052101 (2017).
41. C. Sheng Xia, Z. Simon Li, and Y. Sheng, "On the importance of AlGaN electron blocking layer design for GaN-based light-emitting diodes," Applied Physics Letters 103, 233505 (2013).
42. J. Piprek and S. Li, "Electron leakage effects on GaN-based light-emitting diodes," Optical and Quantum Electronics 42, 89-95 (2010).
43. V. Fiorentini, F. Bernardini, and O. Ambacher, "Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures," Applied Physics Letters 80, 1204-1206 (2002).
44. D. J. Griffiths, "Introduction to electrodynamics," (AAPT, 2005).
45. W. Zimmerman, "Experimental verification of the Shockley--Read--Hall recombination theory in silicon," Electronics Letters 9, 378-379 (1973).
46. T. Langer, A. Chernikov, D. Kalincev, M. Gerhard, H. Bremers, U. Rossow, M. Koch, and A. Hangleiter, "Room temperature excitonic recombination in GaInN/GaN quantum wells," Applied Physics Letters 103, 202106 (2013).
47. W. Shockley and W. Read Jr, "Statistics of the recombinations of holes and electrons," Physical review 87, 835 (1952).
48. R. N. Hall, "Electron-hole recombination in germanium," Physical review 87, 387 (1952).
49. L. Wang, C. Lu, J. Lu, L. Liu, N. Liu, Y. Chen, Y. Zhang, E. Gu, and X. Hu, "Influence of carrier screening and band filling effects on efficiency droop of InGaN light emitting diodes," Optics express 19, 14182-14187 (2011).
50. E. Kioupakis, Q. Yan, D. Steiauf, and C. G. Van de Walle, "Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices," New Journal of Physics 15, 125006 (2013).
51. E. Gaubas and J. Vanhellemont, "Comparative study of carrier lifetime dependence on dopant concentration in silicon and germanium," Journal of The Electrochemical Society 154, H231-H238 (2007).
52. S. Rein, "Lifetime spectroscopy: a method of defect characterization in silicon for photovoltaic applications. 2005," Berlin: Springer 489, 188.
53. J. Yang, D. Zhao, D. Jiang, P. Chen, Z. Liu, J. Zhu, X. Li, X. He, J. Liu, and L. Zhang, "Emission efficiency enhanced by reducing the concentration of residual carbon impurities in InGaN/GaN multiple quantum well light emitting diodes," Optics Express 24, 13824-13831 (2016).
54. Y. Shen, G. Mueller, S. Watanabe, N. Gardner, A. Munkholm, and M. Krames, "Auger recombination in InGaN measured by photoluminescence," Applied Physics Letters 91, 141101 (2007).
55. X. Meng, L. Wang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, "Study on efficiency droop in InGaN/GaN light-emitting diodes based on differential carrier lifetime analysis," Applied Physics Letters 108, 013501 (2016).
56. S. Selberherr, Analysis and simulation of semiconductor devices (Springer Science & Business Media, 2012).
57. W. Liu, R. Butté, A. Dussaigne, N. Grandjean, B. Deveaud, and G. Jacopin, "Carrier-density-dependent recombination dynamics of excitons and electron-hole plasma in m-plane InGaN/GaN quantum wells," Physical Review B 94, 195411 (2016).
58. B.-C. Lin, K.-J. Chen, C.-H. Wang, C.-H. Chiu, Y.-P. Lan, C.-C. Lin, P.-T. Lee, M.-H. Shih, Y.-K. Kuo, and H.-C. Kuo, "Hole injection and electron overflow improvement in InGaN/GaN light-emitting diodes by a tapered AlGaN electron blocking layer," Optics express 22, 463-469 (2014).
59. C. K. Sun, S. Keller, G. Wang, M. Minsky, J. Bowers, and S. DenBaars, "Radiative recombination lifetime measurements of InGaN single quantum well," Applied physics letters 69, 1936-1938 (1996).
60. D. A. Neamen, Semiconductor physics and devices: basic principles (New York, NY: McGraw-Hill, 2012).
61. K. C. Kao, Dielectric phenomena in solids (Elsevier, 2004).
62. J. Hader, J. Moloney, and S. Koch, "Beyond the ABC: Carrier recombinations in semiconductor lasers," in Proc. SPIE, 2006), 61151T.
63. R. Ahrenkiel, S. Ahrenkiel, D. Arent, and J. Olson, "Carrier transport in ordered and disordered In 0.53 Ga 0.47 AS," Applied physics letters 70, 756-758 (1997).
64. H. Ryu, K. Jeon, M. Kang, H. Yuh, Y. Choi, and J. Lee, "A comparative study of efficiency droop and internal electric field for InGaN blue lighting-emitting diodes on silicon and sapphire substrates," Scientific Reports 7(2017).
65. O. Heikkilä, J. Oksanen, and J. Tulkki, "Ultimate limit and temperature dependency of light-emitting diode efficiency," Journal of Applied Physics 105, 093119 (2009).
66. A. Walker, S. Heckelmann, C. Karcher, O. Höhn, C. Went, M. Niemeyer, A. Bett, and D. Lackner, "Nonradiative lifetime extraction using power-dependent relative photoluminescence of III-V semiconductor double-heterostructures," Journal of Applied Physics 119, 155702 (2016).
67. Q. Dai, Q. Shan, J. Wang, S. Chhajed, J. Cho, E. F. Schubert, M. H. Crawford, D. D. Koleske, M.-H. Kim, and Y. Park, "Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes," Applied Physics Letters 97, 133507 (2010).
68. B. Cao, S. Li, R. Hu, S. Zhou, Y. Sun, Z. Gan, and S. Liu, "Effects of current crowding on light extraction efficiency of conventional GaN-based light-emitting diodes," Optics express 21, 25381-25388 (2013).
69. A. Zinovchuk, O. Y. Malyutenko, V. Malyutenko, A. Podoltsev, and A. Vilisov, "The effect of current crowding on the heat and light pattern in high-power AlGaAs light emitting diodes," Journal of Applied Physics 104, 033115 (2008).
70. B. Laikhtman, A. Gourevitch, D. Donetsky, D. Westerfeld, and G. Belenky, "Current spread and overheating of high power laser bars," Journal of applied physics 95, 3880-3889 (2004).
71. L. Zhang, X. Wei, N. Liu, H. Lu, J. Zeng, J. Wang, Y. Zeng, and J. Li, "Improvement of efficiency of GaN-based polarization-doped light-emitting diodes grown by metalorganic chemical vapor deposition," Applied Physics Letters 98, 241111 (2011).
72. S. Choi, H. J. Kim, S.-S. Kim, J. Liu, J. Kim, J.-H. Ryou, R. D. Dupuis, A. M. Fischer, and F. A. Ponce, "Improvement of peak quantum efficiency and efficiency droop in III-nitride visible light-emitting diodes with an InAlN electron-blocking layer," Applied Physics Letters 96, 221105 (2010).
73. Y.-Y. Zhang, X.-L. Zhu, Y.-A. Yin, and J. Ma, "Performance enhancement of near-UV light-emitting diodes with an InAlN/GaN superlattice electron-blocking layer," IEEE Electron Device Letters 33, 994-996 (2012).
74. S.-H. Han, D.-Y. Lee, S.-J. Lee, C.-Y. Cho, M.-K. Kwon, S. Lee, D. Noh, D.-J. Kim, Y. C. Kim, and S.-J. Park, "Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes," Applied Physics Letters 94, 231123 (2009).
75. K.-H. Kim, S.-W. Lee, S.-N. Lee, and J. Kim, "Effect of p-AlxGa1− xN electron blocking layer on optical and electrical properties in GaN-based light emitting diodes," Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 30, 061204 (2012).
76. L. Zhang, K. Ding, N. Liu, T. Wei, X. Ji, P. Ma, J. Yan, J. Wang, Y. Zeng, and J. Li, "Theoretical study of polarization-doped GaN-based light-emitting diodes," Applied Physics Letters 98, 101110 (2011).
77. S. Tu, J. Chen, F. Hwu, G. Sheu, F. Lin, S. Kuo, J. Chang, and C. Lee, "Characteristics of current distribution by designed electrode patterns for high power ThinGaN LED," Solid-State Electronics 54, 1438-1443 (2010).
78. J. Hader, J. Moloney, B. Pasenow, S. Koch, M. Sabathil, N. Linder, and S. Lutgen, "On the importance of radiative and Auger losses in GaN-based quantum wells," Applied Physics Letters 92, 261103 (2008).
79. C. Wang, C. Ke, C. Lee, S. Chang, W. Chang, J. Li, Z. Li, H. Yang, H. Kuo, and T. Lu, "Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer," Applied Physics Letters 97, 261103 (2010).
80. R. M. Perks, A. Porch, D. V. Morgan, and J. Kettle, "Theoretical and experimental analysis of current spreading in AlGaInP light emitting diodes," Journal of applied physics 100, 083109 (2006).