跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林育霆
Yu-Ting Lin
論文名稱: 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響
指導教授: 鍾雲吉
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 77
中文關鍵詞: 有限元素法顆粒體單向度束制壓縮摩擦係數內部性質
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的在使用線性彈性與多孔彈性有限元素法探討鋼珠顆粒體在壓克力圓柱形薄壁容器內受到單向度束制壓縮時的力學行為,並與鋼珠顆粒束制壓縮實驗結果比較,數值模擬採用有限元素分析軟體(ABAQUS),其中材料參數從束制壓縮物理實驗取得,此外透過多孔彈性有限元素模型以及實驗探討不同摩擦係數對鋼珠顆粒體在束制壓縮時力學性質的影響,並利用數值模擬進一步探討不同摩擦係數對鋼珠顆粒體內部力學性質的影響。
    研究結果顯示線性彈性與多孔彈性有限元素法模擬的力學行為與實驗結果一致,一致的物理量包括負載傳遞效率、壁面正向壓力、顆粒體平均垂直應力、壁面剪應力、側向壓力比、體壁啟動摩擦係數、容器環向應力和容器軸向應力,其中多孔彈性有限元素法模擬的整體勁度曲線與實驗結果較為吻合。此外由於有限元素法是基於連續體理論,造成數值模擬在圓周頂部與底部出現數學奇異點(singularity),導致較不穩定的數值出現。從不同摩擦係數的研究結果發現整體勁度、負載傳遞效率、顆粒體平均垂直應力皆隨著體壁摩擦係數的增加而減小,這是受到顆粒與容器壁間摩擦係數的影響。然而壁面正向壓力、側向壓力比、容器環向應力隨著體壁摩擦係數的增加而減小,這是受到顆粒間摩擦係數的影響。而從鋼珠顆粒體的內部力學性質來看,徑向應力與垂直應力分佈皆隨體壁摩擦係數增加而減小並隨深度增加而減小,剪應力分佈則呈現外側往內側衰減的趨勢,且影響範圍隨體壁摩擦係數的增加而越靠近內側。


    The purpose of this study is to investigate the mechanical behavior of steel beads under uni-axial confined compression. The main interest focuses on the interaction between the granular solid and the contacting cylindrical tube. The linear elastic and porous elastic finite element methods are used to model this compression particular system. The previous experimental results are used to validate the proposed FEM models. The influence of friction coefficient on the mechanical response of steel beads during confined compression is further explored.
    The results show that the proposed FEM models (linear elastic and porous elastic) produce good agreement with the corresponding experiments for load transfer efficiency, normal wall pressure, average vertical stress in the bulk solid, shear wall traction, lateral pressure ratio, mobilized bulk wall friction, hoop and axial stresses of the cylindrical tube. The overall loading stiffness, load transfer efficiency and average vertical stress in the bulk solid decrease with the increasing particle-wall coefficient of friction. However, the normal wall pressure, lateral pressure ratio and hoop stresses of the cylindrical tube decrease with the increasing inter-particle coefficient of friction. Both the radial and vertical stresses in the granular solid decrease with the increasing particle-wall coefficient of friction. Shear stresses in the granular solid increase with the increasing particle-wall coefficient of friction.

    摘要 i Abstract ii 目錄 iii 附表目錄 v 附圖目錄 vi 第一章 緒論 1 1.1顆粒體與接觸結構 1 1.2 顆粒材料的束制壓縮 1 1.3 顆粒材料的摩擦效應 4 1.4 研究動機 6 1.5 研究架構 6 第二章 數值架構 7 2.1 顆粒體的束制壓縮實驗 7 2.1.1 束制壓縮實驗設置 7 2.1.2 束制壓縮實驗過程 8 2.1.3 束制壓縮數據分析 8 2.2 ABAQUS有限元素軟體 9 2.2.1 ABAQUS分析模組 10 2.2.3接觸分析 10 2.3 有限元素法建模 11 2.3.1 幾何模型與網格元素 11 2.3.2 接觸性質 12 2.3.3 負載 12 2.4 材料參數 13 2.4.1 線性彈性有限元素模型 13 2.4.2 多孔彈性有限元素模型 14 第三章 結果與討論 15 3.1鋼珠顆粒體在單向度束制壓縮下之力學行為 15 3.2 摩擦係數對鋼珠顆粒體在單向度束制壓縮時力學性質之影響 19 3.3 摩擦係數對鋼珠顆粒體在單向度束制壓縮時內部力學性質之探討 22 第四章 結論 26 參考文獻 28

    [1] C.Y. Song and J.G. Teng, “Buckling of circular steel silos subject to code-specified eccentric discharge pressures”, Engineering Structures 25, pp. 1397-1417, 2003.
    [2] A.J. Sadowski and J.M. Rotter, “A study of buckling in steel silos under eccentric discharge flows of stored solids”, Journal of Engineering Mechanics 136, pp. 769-776, 2010.
    [3] F. Qin, L.H. Guo, J.P. Chen, Z.J. Chen, “Pulverization, expansion of La0.6Y0.4Ni4.8Mn0.2 during hydrogen absorption-desorption cycles and their influences in thin-wall reactors”, International Journal of Hydrogen Energy 33, pp. 709-717, 2008.
    [4] B. Charlas, O. Gillia, P. Doremus, D. Imbault, “Experimental investigation of the swelling/shrinkage of a hydride bed in a cell during hydrogen absorption/desorption cycles”, International Journal of Hydrogen Energy 37, pp. 16031-16041, 2012.
    [5] M. Galli and F. Guzzetti, “Landslide vulnerability criteria: a case study from Umbria, Central Italy”, Environmental Management 40, pp. 649-665, 2007.
    [6] K.H. Hu, P. Cui, J.Q. Zhang, “Characteristics of damage to buildings by debris flows on 7 August 2010 in Zhouqu, Western China”, Natural Hazards and Earth System Sciences 12, pp. 2209-2217, 2012.
    [7] Y.M. Tien, P.L. Wu, W.H. Huang, M.F. Kuo, C.A. Chu, “Wall friction measurement and compaction characteristics of bentonite powders”, Powder Technology 173, pp. 140-151, 2007.
    [8] Y.Y. Foo, Y. Sheng, B.J. Briscoe, “An experimental and numerical study of the compaction of alumina agglomerates”, International Journal of Solids and Structures 41, pp. 5929-5943, 2004.
    [9] A. Michrafy, D. Ringenbacher, P. Tchoreloff, “Modelling the compaction behaviour of powders: application to pharmaceutical powders”, Powder Technology 127, pp. 257-266, 2002.
    [10] C.Y. Wu, O.M. Ruddy, A.C. Bentham, B.C. Hancock, S.M. Best, J.A. Elliott, “Modelling the mechanical behaviour of pharmaceutical powders during compaction”, Powder Technology 152, pp. 107-117, 2005.
    [11] L.H. Han, J.A. Elliott, A.C. Bentham, A. Mills, G.E. Amidon, B.C. Hancock, “A modified Drucker-Prager Cap model for die compaction simulation of pharmaceutical powders”, International Journal of Solids and Structures 45, pp. 3088-3106, 2008.
    [12] 呂紹桓,「以ABAQUS模擬粉體之壓實行為」,國立中央大學,碩士論文,民國95。
    [13] J. Ai, J.F. Chen, J.Y. Ooi, “Finite element simulation of the pressure dip in sandpiles”, International Journal of Solids and Structures 50, pp. 981-995, 2013.
    [14] J.M. Rotter, “Silo and hopper design for strength”, pp. 99-134 in Bulk solids handling equipment selection and operation, Blackwell, Oxford, UK, 2008.
    [15] S. A. Masroor, L. W. Zachary, R. A. Lohnes, “A Test Apparatus for Determining Elastic Constants of Bulk Solids”, pp. 553-558 in Proceedings of the 1987 SEM Spring Conference on Experimental Mechanics, Houston, Texas, USA, June 14-19, 1987.
    [16] Y.C. Chung, C.K. Lin, P.H. Chou, S.S. Hsiau, “Mechanical behaviour of a granular solid and its contacting deformable structure under uniaxial compression -Part I: Joint DEM-FEM modelling and experimental validation”, Chemical Engineering Science 144, pp. 404-420, 2016.
    [17] 彭瀚泓,「不同形狀及摩擦係數之顆粒物質受束制壓力負載之力學分析」,國立中央大學,碩士論文,民國102。
    [18] J. Wiącek, M. Molenda, J. Horabik, J. Y. Ooi, “Influence of Grain Shape and Intergranular Friction on Material Behavior in Uniaxial Compression: Experimental and DEM Modeling”, Powder Technology 217, pp. 435-442, 2012.
    [19] Md. M. Sazzad and Md. S. Islam, “Macro and Micro Mechanical Responses of Granular Material under Varying Interparticle Friction”, Journal of Civil Engineering 36 (2008) 87-96.
    [20] J. Härtl and J. Y. Ooi, “Numerical Investigation of Particle Shape and Particle Friction on Limiting Bulk Friction in Direct Shear Tests and Comparison with Experiments”, Powder Technology 212, pp. 231-239, 2011.
    [21] D. L. Blair, N. W. Mueggenburg, A. H. Marshall, H. M. Jaeger, S. R. Nagel, “Force Distributions in Three-Dimensional Granular Assemblies: Effects of Packing Order and Inter-Particle Friction,” Physical Review E 63, 041304, 2001.
    [22] K. Odagi, T. Tanaka, K.Yamane, “DEM SIMULATION OF COMPRESSION TEST OF PARTICLES”, Paper No. 172 in Proceegings of world congress on Particle Technology 4 (CD-ROM), Sydney, Australia, July 21-25, 2002.
    [23] EN 1991-4, Eurocode 1-Actions on structures-Part 4: Silos and Tanks, CEN, Brussels, 2005.
    [24] Dassault Systemes Simulia Corp., ABAQUS Analysis User’s Manual, Version 6.12, Providence RI, USA, 2012.
    [25] Dassault Systemes Simulia Corp., ABAQUS Keywords Reference Manual, Version 6.12, Providence RI, USA, 2012.
    [26] Biomaterials Properties Database, Acrylic, http://www.zubnistranky.cz/bio.htm#24.
    [27] J. Ai, “Particle scale and bulk scale investigation of granular piles and silos”, PhD thesis, The University of Edinburgh, Edinburgh, UK, 2010.
    [28] J.M. Rotter, J. Holst, J.Y. Ooi, A.M. Sanad, “Silo pressure predictions using discrete-element and finite-element analyses”, Philosophical Transactions of the Royal Society of London A 356, pp. 2685-2712, 1998.

    QR CODE
    :::