| 研究生: |
余秉澤 Ping-Tse Yu |
|---|---|
| 論文名稱: |
以還原碴廢棄材料捕捉二氧化碳之研究 Carbon dioxide capture by waste material of reductive slag |
| 指導教授: |
曾迪華
Dyi-Hwa Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 還原碴 、二氧化碳捕捉 、碳酸化 、表面覆蓋模式 |
| 外文關鍵詞: | reductive slag, CO2 capture, carbonation, surface coverage model |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的以還原碴廢棄材料捕捉二氧化碳,評估碳酸化效率、反應速率及反應機制。試驗中在不同的操作條件下,分別進行於氣液相系統及氣液固相系統。
萃取試驗結果指出,在pH值為4及固液比50 g/L 時,鈣離子最大萃取效率79.4%。氣液相系統於氣體流量1.0 L/min 及二氧化碳進流濃度100%下反應60分鐘,達最佳碳酸化效率67.6%。
此外,氣液固相碳酸化試驗結果顯示,在固液比30 g/L、氣體流量1.0 L/min、二氧化碳進流濃度20%下反應90分鐘,達最佳鈣轉化率51.3%。經動力模式模擬氣液固相碳酸化反應相當符合表面覆蓋模式,並由動力分析得知碳酸化反應速率常數隨氣體流量與二氧化碳進流濃度的增加及固液比的降低而增加。
The objectives of this study were to evaluate the carbonation efficiencies, reaction rate and mechanism for carbon dioxide capture by waste material of reductive slag. The experiments were carried out at gas-liquid phase system and gas-liquid-solid phase system under different operation parameters, respectively.
The results of extraction tests indicated that the maximum 79.4% of calcium was extracted from slag at pH 4 and solid/liquid ratio of 50 g/L. Then, the optimum 67.6% carbonation efficiency was obtained at gas flow rate of 0.5 L/min and inflow CO2 concentration of 100% during the 60 min reaction time for gas-liquid phase system.
In addition, the test results of gas-liquid-solid phase system revealed that the optimum calcium conversion was about 51.3% at the conditions of solid-liquid ratio was 30 g/L, gas flow rate was 1 L/min, and inflow CO2 concentration was 20% during the reaction time of 90 min. The result of simulation kinetic studies showed that the carbonation reaction occurred in gas-liquid-solid phase system was well fitted to the surface coverage model. Also, the reaction rate constant of carbonation was increased with the increase of gas flow rate and CO2 concentration, and with the decrease of solid-liquid ratio, respectively.
1.Allwood, J. M., J. M. Cullen, and R. L. Milford, “Options for achieving a 50% cut in industrial carbon emissions by 2050”, Environmental science & technology, vol. 44, pp. 1888-1894, (2010).
2.Arickx, S., V. De Borger, T. Van Gerven, and C. Vandecasteele, “Effect of carbonation on the leaching of organic carbon and of copper from MSWI bottom ash”, Waste Management, vol. 30, pp. 1296-1302, (2010).
3.Baciocchi, R., G. Costa, E. Di Bartolomeo, A. Polettini, and R. Pomi, “Carbonation of Stainless Steel Slag as a Process for CO2 Storage and Slag Valorization”, Waste and Biomass Valorization, vol. 1, pp. 467-477, (2010).
4.Back, M., M. Kuehn, H. Stanjek, and S. Peiffer, “Reactivity of Alkaline Lignite Fly Ashes Towards CO2 in Water”, Environmental science & technology, vol. 42, pp. 4520-4526, (2008).
5.Bobicki, E. R., Q. Liu, Z. Xu, and H. Zeng, “Carbon capture and storage using alkaline industrial wastes”, Progress in Energy and Combustion Science, vol. 38, pp. 302-320, (2012).
6.Bonenfant, D., L. Kharoune, S. b. Sauve´, R. Hausler, P. Niquette, M. Mimeault, and M. Kharoune, “CO2 Sequestration Potential of Steel Slags at Ambient Pressure and Temperature”, Industrial & Engineering Chemistry Research, vol. 47, pp. 7610-7616, (2008).
7.Chang, E. E., C. H. Chen, Y. H. Chen, S. Y. Pan, and P. C. Chiang, “Performance evaluation for carbonation of steel-making slags in a slurry reactor”, Journal of hazardous materials, vol. 186, pp. 558-564, (2011a).
8.Chang, E. E., A. C. Chiu, S. Y. Pan, Y. H. Chen, C. S. Tan, and P. C. Chiang, “Carbonation of basic oxygen furnace slag with metalworking wastewater in a slurry reactor”, International Journal of Greenhouse Gas Control, vol. 12, pp. 382-389, (2013).
9.Chang, E. E., S. Y. Pan, Y. H. Chen, H. W. Chu, C. F. Wang, and P. C. Chiang, “CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor”, Journal of hazardous materials, vol. 195, pp. 107-114, (2011b).
10.Costa, G., R. Baciocchi, A. Polettini, R. Pomi, C. D. Hills, and P. J. Carey, “Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues”, Environmental monitoring and assessment, vol. 135, pp. 55-75, (2007).
11.Fagerlund, J., S. Teir, E. Nduagu, and R. Zevenhoven, “Carbonation of magnesium silicate mineral using a pressurised gas/solid process”, Energy Procedia, vol. 1, pp. 4907-4914, (2009).
12.Fauth, D. J., P. M. Goldberg, J. P. Knoer, Y. Soong, W. K. O'Connor, D. C. Dahlin, D. N. Nilsen, R. P. Walters, K. S. Lackner, H. J. Ziock, M. J. McKelvy, and Z.-Y. Chen, “Carbon dioxide storage as mineral carbonates”, Division Fuel Chemistry, pp. 708-712, (2000).
13.Fernández Bertos, M., S. J. R. Simons, C. D. Hills, and P. J. Carey, “A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2”, Journal of hazardous materials, vol. 112, pp. 193-205, (2004).
14.Goff, F., and K. S. Lackner, “Carbon Dioxide Sequestering Using Ultramafic Rocks”, Environmental Geosciences, vol. 5, pp. 89-102, (1998).
15.Huijgen, W., G. Witkamp, and R. Comans, “Mineral CO2 sequestration in alkaline solid residues”, Greenhouse Gas Control Technologies, vol. II, pp. 2415-2418, (2005).
16.Huijgen, W. J. J., and R. N. J. Comans, “Carbon dioxide sequestration by mineral carbonation Literature Review 2003”, ECN-Clean Fossil Fuels Environmental Risk Assessment, ECN-C--03-016, (2003).
17.Huijgen, W. J. J., and R. N. J. Comans, “Carbon dioxide sequestration by mineral carbonation Literature Review Update 2003-2004”, Energy research Centre of the Netherlands, (2005a).
18.Huijgen, W. J. J., and R. N. J. Comans, “Mineral CO2 Sequestration by Steel Slag Carbonation”, Environmental science & technology, vol. 39, pp. 9676-9682, (2005b).
19.Huntzinger, D. N., J. S. Gierke, S. K. Kawatra, T. C. Eisele, and L. L. Sutter, “Carbon Dioxide Sequestration in Cement Kiln Dust through Mineral Carbonation”, Environmental science & technology, vol. 43, pp. 1986-1992, (2009a).
20.Huntzinger, D. N., J. S. Gierke, L. L. Sutter, S. K. Kawatra, and T. C. Eisele, “Mineral carbonation for carbon sequestration in cement kiln dust from waste piles”, Journal of hazardous materials, vol. 168, pp. 31-37, (2009b).
21.Iizuka, A., M. Fujii, A. Yamasaki, and Y. Yanagisawa, “Development of a New CO2 Sequestration Process Utilizing the Carbonation of Waste Cement”, Industrial & Engineering Chemistry Research, vol. 43, pp. 7880-7887, (2004).
22.Jo, H. Y., J. H. Kim, Y. J. Lee, M. Lee, and S. J. Choh, “Evaluation of factors affecting mineral carbonation of CO2 using coal fly ash in aqueous solutions under ambient conditions”, Chemical Engineering Journal, vol. 183, pp. 77-87, (2012).
23.Kakizawa, M., A. Yamasaki, and Y. Yanagisawa, “A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid”, Energy, vol. 26, pp. 341-354, (2001).
24.Kodama, S., T. Nishimoto, N. Yamamoto, K. Yogo, and K. Yamada, “Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution”, Energy, vol. 33, pp. 776-784, (2008).
25.Kojima, T., A. Nagamine, N. Ueno, and S. Uemiya, “Absorption and fixation of carbon dioxide by rock weathering”, Energy Conversion and Management, vol. 38, pp. S461-S466, (1997).
26.Lackner, K. S., “Carbonate Chemistry for Sequestering Fossil Carbon”, Annual Review of Energy and the Environment, vol. 27, pp. 193-232, (2002).
27.Lange, L. C., C. D. Hills, and A. B. Poole, “The influence of mix parameters and binder choice on the carbonation of cement solidified wastes”, Waste Management, vol. 16, pp. 749-756, (1996).
28.Lekakh, S. N., C. H. Rawlins, D. G. C. Robertson, V. L. Richards, and K. D. Peaslee, “Kinetics of Aqueous Leaching and Carbonization of Steelmaking Slag”, Metallurgical and Materials Transactions B, vol. 39, pp. 125-134, (2008).
29.Mattila, H. P., I. Grigaliūnaitė, and R. Zevenhoven, “Chemical kinetics modeling and process parameter sensitivity for precipitated calcium carbonate production from steelmaking slags”, Chemical Engineering Journal, vol. 192, pp. 77-89, (2012).
30.Montes-Hernandez, G., R. Perez-Lopez, F. Renard, J. M. Nieto, and L. Charlet, “Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash”, Journal of hazardous materials, vol. 161, pp. 1347-1354, (2009).
31.Nikulshina, V., M. E. Gálvez, and A. Steinfeld, “Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2–CaCO3–CaO solar thermochemical cycle”, Chemical Engineering Journal, vol. 129, pp. 75-83, (2007).
32.Pérez-López, R., G. Montes-Hernandez, J. M. Nieto, F. Renard, and L. Charlet, “Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere”, Applied Geochemistry, vol. 23, pp. 2292-2300, (2008).
33.Pan, S. Y., P. C. Chiang, Y. H. Chen, C. S. Tan, and E. E. Chang, “Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: Maximization of carbonation conversion”, Applied Energy, vol. 113, pp. 267-276, (2014).
34.Pontiga, F., J. M. Valverde, H. Moreno, and F. J. Duran-Olivencia, “Dry gas–solid carbonation in fluidized beds of Ca(OH)2 and nanosilica/Ca(OH)2 at ambient temperature and low CO2 pressure”, Chemical Engineering Journal, vol. 222, pp. 546-552, (2013).
35.Prigiobbe, V., A. Polettini, and R. Baciocchi, “Gas–solid carbonation kinetics of Air Pollution Control residues for CO2 storage”, Chemical Engineering Journal, vol. 148, pp. 270-278, (2009).
36.Rendek, E., G. Ducom, and P. Germain, “Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash”, Journal of hazardous materials, vol. 128, pp. 73-79, (2006).
37.Seifritz, W., “CO2 disposal by means of silicates”, Nature, vol. 345, pp. 486-486, (1990).
38.Shih, S. M., C. S. Ho, Y. S. Song, and J. P. Lin, “Kinetics of the Reaction of Ca(OH)2 with CO2 at Low Temperature”, Industrial & Engineering Chemistry Research, vol. 38, pp. 1316-1322, (1999).
39.Sicong, T., J. Jianguo, and Z. Chang, “Influence of flue gas SO2 on the toxicity of heavy metals in municipal solid waste incinerator fly ash after accelerated carbonation stabilization”, Journal of hazardous materials, vol. 192, pp. 1609-1615, (2011).
40.Sipilä, J., S. Teir, and R. Zevenhoven, “Carbon dioxide sequestration by mineral carbonation Literature Review update 2005-2007”, Åbo Akademi University Faculty of Technology Heat Engineering Laboratory, (2008).
41.Tian, S., and J. Jiang, “Sequestration of flue gas CO2 by direct gas-solid carbonation of air pollution control system residues”, Environmental science & technology, vol. 46, pp. 13545-13551, (2012).
42.Ukwattage, N. L., P. G. Ranjith, and S. H. Wang, “Investigation of the potential of coal combustion fly ash for mineral sequestration of CO2 by accelerated carbonation”, Energy, vol. 52, pp. 230-236, (2013).
43.Vatopoulos, K., and E. Tzimas, “Assessment of CO2 capture technologies in cement manufacturing process”, Journal of Cleaner Production, vol. 32, pp. 251-261, (2012).
44.Wang, L., Y. Jin, and Y. Nie, “Investigation of accelerated and natural carbonation of MSWI fly ash with a high content of Ca”, Journal of hazardous materials, vol. 174, pp. 334-343, (2010).
45.Yadav, V. S., M. Prasad, J. Khan, S. S. Amritphale, M. Singh, and C. B. Raju, “Sequestration of carbon dioxide (CO2) using red mud”, Journal of hazardous materials, vol. 176, pp. 1044-1050, (2010).
46.Yu, J., and K. Wang, “Study on Characteristics of Steel Slag for CO2 Capture”, Energy & Fuels, vol. 25, pp. 5483-5492, (2011).
47.Zevenhoven, R., and J. Fagerlund,“Fixation of Carbon Dioxide into Inorganic Carbonates: The Natural and Artificial “Weathering of Silicates””, In Carbon Dioxide as Chemical Feedstock, 353-379: Wiley-VCH Verlag GmbH & Co. KGaA(2010).
48.Cunningham, W. P., M. A. Cunningham, B. W. Saigo, “Environmental Science: A Global Concern”, Mc Graw-Hill 8th Education, New York, USA, (2005).
49.Levenspiel, Octave.,“Chemical reaction engineering”, Wiley 3rd edition, (1988).
50.IPCC,“IPCC Special Report on Carbon Dioxide Capture and Storage”, Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, 442 pp, (2005)
51.Teir, S.,“Fixation of carbon dioxide by producing carbonates from minerals and steelmaking slags”,Department of Energy Technology, Helsinki University of Technology, Doctoral, Finland, (2008).
52.朱孝文,「以鹼性固體廢棄物碳酸化法封存二氧化碳」,環境工程研究所,國立台灣大學,碩士論文,台北,(2007)。
53.邱安家,「利用轉爐石與鋼鐵廢水在漿體反應槽中進行碳酸化反應」,環境工程研究所,國立台灣大學,碩士論文,台北,(2011)。
54.陳則綸,「以轉爐石與冷軋廢水於旋轉填充床捕捉二氧化碳之研究」,環境工程研究所,國立台灣大學,碩士論文,台北,(2012)。
55.陳駿華,「以流體化床進行濕式碳酸化反應之績效評量」,環境工程研究所,國立台灣大學,碩士論文,台北,(2009)。
56.張高僑,「鈣系爐渣封存二氧化碳行為之研究」,環境工程研究所,國立成功大學,碩士論文,台南,(2008)。
57.程士豪,「模擬煙道氣進行轉爐石碳酸化之研究」,環境工程與科學系,輔英科技大學,碩士論文,高雄,(2008)。
58.傅國柱,「還原碴取代部份水泥之研究」,土木工程研究所,國立中央大學,碩士論文,中壢,(2002)。
59.蔡弦志,「再生材料應用於道路鋪面工程之成本效益研究」,土木工程研究所,國立中央大學,碩士論文,中壢,(2003)。
60.潘述元,「在超重力旋轉填充床中利用煉鋼爐石碳酸化反應進行二氧化碳捕捉」,環境工程研究所,國立台灣大學,碩士論文,台北,(2011)。
61.鄭清元,「電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究」,土木工程研究所,國立中央大學,碩士論文,中壢,(2000)。
62.曾迪華, 張木彬, 廖萬里, 羅友志, 陳政澤,「低污染工業製程及污染防治技術之調查研究-鋼鐵業」,臺灣省環境保護處委託研究報告,國立中央大學環境工程研究所,(1994)。
63.劉國忠,「煉鋼爐碴之資源化技術與未來推展方向」,環保月刊,第1卷第4期,pp.114-136,(2001)。
64.經濟部能源局,「我國燃料燃燒CO2排放統計與分析」,經濟部能源局,(2011)。