| 研究生: |
鄭皓文 Hao-Wen Cheng |
|---|---|
| 論文名稱: |
以數值模型與離心模型試驗探討含二組正交節理之逆向坡變形及破壞行為 |
| 指導教授: | 黃文昭 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 174 |
| 中文關鍵詞: | 逆向坡 、傾覆破壞 、PFC3D 、離心模型 、正交節理 、岩塊傾覆破壞 |
| 外文關鍵詞: | Anti-dip slope, toppling failure, PFC3D, centrifuge model test, orthogonal joints, block toppling |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣受到板塊擠壓的影響而形成山多平原少的地形,近年來極端氣候發生的頻率增加,岩石邊坡若受到豪雨、地震、河流沖刷等自然因素或是人為因素開發的影響,將會造成邊坡的不穩定甚至進而破壞,使附近居民或是用路人的生命財產受到威脅。
胡家豪(2019)利用離心模型進行高角度逆向坡之物理試驗,並使用PFC3D來模擬更高重力場下之變形行為,考慮之變因為岩層厚度及解壓長度,研究結果指出,解壓長度愈長及岩層厚度愈薄,其岩層愈易變形,且為撓屈傾覆破壞形態。
本研究則接續探討具第二組正交節理之逆向坡破壞型態,將以中央大學地工離心機進行物理試驗,並利用PFC3D進行相同試驗條件下之數值模擬,再與物理試驗進行參數校正,以此進行更高重力場下之數值模擬,用以探討第二組節理面對不同岩層厚度及解壓長度的逆向坡所造成之影響,並與不含第二組節理面逆向坡之比較。從試驗結果可得知,在有兩組相互垂直節理組的逆向坡中,岩片細長比高的岩柱仍以撓屈傾覆破壞為主,需有適當的寬度才會發生塊體傾覆破壞。
In recent years, the frequency of extreme climate has increased. If the rock slope is affected by natural factors such as heavy rain, earthquakes, river erosion or human activities, it will cause instability and even failure of the slope and threaten the lives and property of the people.
Hu, (2019) used centrifuge tests and PFC3D to simulate the deformation behavior of the anti-dip slope under different gravity, different layer thicknesses, and release lengths. The results show that the longer release lengths and the thinner layer thickness, the more easily the layer is deformed. The failure mode will be flexural toppling.
In this study, we used Centrifuge tests for physical model and PFC3D for numerical simulation to discussed the second jointed anti-dip slope failure. Then compare the two test results and perform numerical simulation under higher gravity field with the same parameters. It is used to investigates the effects of second joint set in anti-dip slopes of different layer thicknesses and release lengths under different gravity. It also discusses the difference between the deformation behavior of anti-dip slope.
It can be known from the test results that the thinner layer still demonstrated the flexural toppling, and block toppling would occur with proper width.
1.國家災害防救科技中心,災害潛勢地圖網站,檢自:https://dmap.ncdr.nat.gov.tw/主選單/熱門災害主題/山崩-土石流-坡地災害潛勢/# (Sep.2,2019)。
2.李明翰,「岩坡傾倒破壞之研究-以台14線公路為例」,碩士論文,朝陽科技大學營建工程系,台中(2003)。
3.莊庭鳳,「以分離元素法探討板岩邊坡變形機制」,碩士論文,國立高雄大學土木與環境工程所,高雄(2014)。
4.林育槿,「以分離元素法與離心模型試驗探討順向坡滑動行為」,碩士論文,國立中央大學土木工程學系,桃園(2016)。
5.李昆哲,「探討不同型態及尺度順向坡的滑動與堆積行為」,碩士論文,國立中央大學土木工程學系,桃園(2016) 。
6.趙柏諺,「以室內實驗與數值模型探討簡化高角度逆向坡之變形行為」,碩士論文,國立中央大學土木工程學系,桃園 (2018)。
7.胡家豪,「以離心模型試驗與數值模型探討高角度逆向坡的破壞行為」,碩士論文,國立中央大學土木工程學系,桃園 (2019)。
8.張有毅,模型支承座之設計圖,個人通訊(2017)。
9.Müller, L., “New Considerations on the Vajont Slide,” Rock Mechanics and Engineering Geology, Vol 6, pp. 1-91 (1968).
10.Ashby, J., “Sliding and toppling modes of failure in models and jointed rock slopes,” Master of Science, Imperial College, University of London (1971).
11.Cundall, P., “A computer model for simulating progressive, large scale movements in blocky rock systems,” Proc. International Symposium on Rock Fractures, Nancy, France (1971).
12.Chigira, M., “Long-term gravitational deformation of rocks by mass rock creep,” Engineering Geology, Vol. 32, No. 3, pp. 157-184 (1992).
13.Adhikary, D. P., Dyskin, A. V., Jewell, R. J. and Stewart, D. P., “A study of the mechanism of flexural toppling failure of rock slopes,” Rock Mechanics and Rock Engineering, Vol. 30, pp. 75-93 (1997).
14.Nichol, S. L., Hungr, O. and Evans, S. G.,“Large-scale brittle and ductile toppling of rock slopes,” Canadian Geotechnical Journal, Vol. 39, pp. 773-788 (2002).
15.Goricki, A., Goodman, R.E., “Failure modes of rock slopes demonstrated with base friction and simple numerical models,” FELSBAU , No.2, pp. 25-30 (2003).
16.Duncan C. Wyllie, and Christopher W. Mah, Rock Slope Engineering, Spon Press, London and New York, pp. 200-216 (2004).
17.Alzo’ubi, A. K., Martin, C. D. and Cruden, D. M., “Influence of tensile strength on toppling failure in centrifuge tests,” International Journal of Rock Mechanics and Mining Sciences, Vol. 47, pp, 974-982 (2010).
18.Huang, R., Zhao, J., Ju, N., Li, G., Lee, M. L. and Li, Y., “Analysis of an anti-dip landslide triggered by the 2008 Wenchuan earthquake in China,” Natural Hazards, Vol. 68, pp. 1021-1039 (2013).
19.Aydan, Ö., “Large Rock Slope Failures Induced by Recent Earthquakes,” Rock Mechanics and Rock Engineering, Vol. 49, pp. 2503-2524 (2016).
20.Amini, M., Ardestani, A., Khosravi, M.H., “Stability analysis of slide-toe-toppling failure,” Engineering Geology, Vol. 228, pp. 82-96 (2017).
21.Lo, C.-M., “Evolution of deep-seated landslide at Putanpunas stream, Taiwan,” Geomatics, Natural Hazards and Risk, Vol. 8, pp. 1204-1224 (2017).
22.Alejan, L.R. , Sánchez-Alonso, C., Pérez-Rey, I., Arzúa, J., Alonso, E., González, J., Beltramone, L., Ferrero, A.M., “Block toppling stability in the case of rock blocks with rounded edges,” Engineering Geology, Vol.234, pp. 192-203 (2018).
23.Itasca Consulting Group Inc. (2002) PFC3D (Particle Flow Code in 3 Dimensions). Version 3.0 Minneapolis, MN: ICG.