| 研究生: |
蘇國銓 Kuo-Chuan Su |
|---|---|
| 論文名稱: |
鈦合金之超塑性成形研究 Study on Superplastic Forming of Titanium Alloys |
| 指導教授: |
李雄
Shyong Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 鈦合金 、超塑性 |
| 外文關鍵詞: | Titanium, Ti-6Al-4V, Superplastic Forming |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
關於鈦合金的超塑性成形研究已經有很長的一段時間,Ti-6Al-4V在這個領域當中,因其具有優越的超塑性與擴散接合的特性,使得它是目前使用最為廣泛的鈦合金超塑性材料。而厚度分布在超塑性成形中,又具有其重要性;當在發生塑性變形時,厚度分布可以提供成形過程中的相關資訊,因此分析厚度分布有其必要性。
本實驗主要研究主題在於長方形盒成形後的厚度分布分析,為了知道如何使得厚度分布均勻一致,將從三個部分著手;分別為文獻資料、試誤法、MARC軟體模擬分析,以獲得其有效成形壓力與時間曲線。而且依照MARC模擬出來之有效成形壓力與時間曲線所吹製出來的實驗,其最大厚度差可以控制在11%以內(不含入模角)。另外將潤滑液改採用石墨液混合氮化硼代替先前所使用的石墨液與氮化硼,可以將最大厚度差由11%下降到4%左右,以改善其厚度分布的均勻性。比較MARC模擬的厚度分布與實驗吹製出來的厚度分布,其最大誤差率約為8%(不含入模角)。簡而言之,我們可以透過MARC精準的預測實驗結果,並且達到節省成本的目的。
Superplastic forming of titanium alloys has been studied popularly for a long time. Ti-6Al-4V has two characteristics, superior superplastic forming and diffusion bonding, which dominate the result in its wide application in titanium alloys. To analyze the distribution of thickness in superplastic forming is significant, because it can provide the information about the process of plastic deformation of Ti-6Al-4V.
The main subject is to study on the distribution of thickness of rectangular box. In order to know how to obtain the uniform thickness, it’s necessary to analyze pressure profiles. By adopting two methods, try and error and finite element-MARC, pressure profiles are easily obtained. Besides, we can also get pressure profiles by consulting documentary data. From the result of experiment, it shows the tolerance of thickness is less than 11% when disregarding the factor of die entry radius. The tolerance of thickness can reduce from 11% to 4% when mixture of graphite and boron nitride is substituted for the original lubrication. According to the comparison of distribution of thickness between MARC and experiment, we can get the error rate is less than 8% when disregarding the factor of die entry radius. In a word, we can predict the result of experiment by MARC and save the cost.
1、William F., Smith “Structure and Properties of Engineering Alloys”, New York, McGraw-Hill, (1981), pp411-457.
2、Metals Handbook, Vol.8, “Metallography Structures and Phase Diagrams”American Society for Metals, Metals Park, OH. 44073, pp141.
3、T.G. Nieh, J. Wadsworth, O.D. Sherby, “Superplasticity in Metals and Ceramics”, Cambridge University Press, Cambridge, UK, (1997).
4、G.A. Salishchev, R.M. Galeyev, “Development of Ti-6Al-4V Sheet with Low Temperature Superplastic Properties”, Journal of Materials Processing Technology, 116 (2001), pp265-268.
5、S.N. Patankar, J.P. Escobedo, “Superior Superplastic Behavior in Fine-Grained Ti-6Al-4V Sheet”, Journal of Alloys and Compounds, 345 (2002), pp221-227.
6、A.K. Ghosh, C.H. Hamilton, ”Superplastic Forming and Diffusion Bonding of Titanium Alloys”, Def. Sci. J., 36(2) (1986), pp153-177.
7、C.H. Hamilton, “Superplasticity in Titanium Alloys”, Superplastic Forming, ASM International, (1985), pp13-22.
8、Matthew J. Donacehie, JR., “Titanium and Titanium Alloys”, American Society for Metals, Metals Park, OH. 44073.
9、A.K. Ghosh, C.H. Hamilton, “Superplastic Forming of a Long Rectangular Box Section -Analysis and Experiment”, Rockwell International Thousand Oaks, California.
10、Oleg D. Sherby, “Advances in Superplasticity and Superplastic Materials”, ISIJ International, Vol. 29 (1989), No.8, pp698-716.
11、R. Verma, P.A. Friedman, A.K. Ghosh, C. Kim, and S. Kim, ”Characterization of Superplastic Deformation Behavior of a Fine Grain 5083 Al Alloy Sheet”, Metallurgical and Materials Transactions A, (1996), pp1889.
12、R. Verma, P.A. Friedman, A.K. Ghosh, C. Kim, and S. Kim, “Superplastic Forming Characteristics of Fine-Grained Aluminum”, J. Mater. Sci. Eng, (1995), pp543.
13、C.H. Hamilton, A. K. Ghosh, “Characterization of Superplastic Deformation Properties of Ti-6Al-4V”, Rockwell International Science Center Thousand Oaks, California 91360, pp1003-1014.
14、J.S. Shyu, T.H. Chuang, “Comparison of Superplastic Formability between Ti-6Al-4V and Ti-6Al-6V-2Sn Alloy”, Chinese Journal of Materials Science, Vol.27 (1995), pp130-140.
15、D.C. Dunand, C.M. Bedell, “Transformation-Mismatch Superplasticity in Reinforced and Unreinforced Titanium”, Vol.44 (1996), No.3, pp1063-1076, Pergamon Press.
16、J.D. Will, M.G. Kistner and J.D. Cotton, “Characterization of Laser-Welded Ti-62222S/Ti-64 Superplastically-Formed Panels”, Superplasticity and Superplastic Forming (1998), pp321-330.
17、Materials Properties Handbook, “Titanium Alloys”, Materials Park, OH. ASM International, (1994), pp483-636.
18、機械材料, 金重勳著, 復文書局, pp459.
19、洪國程,國立中央大學九十一年機械所碩士論文
20、張書省,國立中央大學八十九年機械所碩士論文
21、張世穎,國立台灣大學八十年材料科學與工程學所碩士論文
22、鎂及鋁合金之超塑性成形, 葉均蔚著, 工業材料雜誌, 174期,
90年6月, pp102-112.