跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖宜辰
Yi-chen Liao
論文名稱: 沸石氟化及中孔洞材料胺基化之研究
Studies on Fluorination of Zeolites and AmineFunctionalization of Mesoporous Materials
指導教授: 高憲明
Hsien-Ming Kao
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 95
語文別: 中文
論文頁數: 158
中文關鍵詞: 中孔洞胺基官能基沸石氟化
外文關鍵詞: Mesoporous, Fluorination, Amine
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文中分為二個部份,第一部份是沸石經 NH4F 氟化處理後,利用 NMR
    技術來研究探討,第二部份為中孔洞材料 SBA-1 植入胺基官能基,利用 XRD
    等溫氮氣吸脫附及 29Si MAS NMR 來研究官能基對孔洞結構的影響。
    首先在沸石 HY 方面,在經過 NH4F 處理後,可在 27Al MAS NMR 觀察
    到四配位的鋁會脫離骨架而形成骨架外的六配位鋁化物,對應 19F MAS NMR
    則位於 -141 ppm 乃是屬於 (NH4)3AlF6 化合物。在這篇論文中,主要發現到的
    是,反應溫度為 80 度在 FNH4F/AlHY = 3 於 19F MAS NMR 則是觀察到訊號峰
    為 -173 ppm 和其側峰 -182 ppm,並且經由 27Al/19F 2D HETCOR NMR 交錯訊
    號得到 50 ppm 為骨架鋁的訊號峰,可能氟離子跟骨架鋁進行反應,使得氟離
    子鍵結在骨架中的鋁,形成四配位氟鋁化合物。
    而在 FNH4F/AlHY = 4,經由27Al MAS NMR 結果為位於 -20 ppm 至 -70 ppm
    有極寬之訊號產生,對應於 19F MAS NMR 則是觀察到兩個訊號峰,分別處於
    -151 及 -166 ppm,經過鑑定後確定為 NH4AlF4 化合物,而該訊號的產生需在
    NH4F 反應劑量為 FNH4F/AlHY = 4 或者反應溫度需提高到攝氏 100 度且
    FNH4F/AlHY 降低到 2 就可得到 NH4AlF4。另外 HY 和 NH4F 在溫度 25oC 下反
    應時,並且反應時間維持 3 小時,主要由 27Al NMR 上得知,主要訊號峰為 -1
    ppm,並且由 19F NMR 得知反應物分佈位置為 -143 至 -153 ppm,可能氟鋁化
    合物為 Al(O5F)、Al(O4F2) 與 AlF3
    .nH2O。
    第二部份是以四乙氧基矽酸鹽 (TEOS) 與胺丙烷基三甲氧基矽烷 (APTMS)
    為共同矽源,使用十六烷基三乙基溴化銨 (C16TEABr) 作為主要模板試劑,以
    直接合成具有胺基官能基的中孔洞材料,在移除模板後,得到的中孔洞材料仍
    具有 SBA-1 的結構存在。
    藉由改變不同的合成溫度及不同矽源,探討對於合成具有胺基官能基之
    SBA-1 的結構影響,在 XRD 的結果中可以發現胺基官能基對結構的影響,藉由固態核磁共振之 13C 及 29Si MAS NMR 可以得知胺基官能基在骨架中的含量。


    The thesis is divided into two parts. Studies on fluorination of zeolites HY and
    amine functionalization of mesoporous materials.
    First, HY samples treated with NH4F (FNH4F/AlHY = 3) at 80oC, 27Al NMR
    revealed that tetrahedral aluminum was at 60 ppm from the zeolitic framework and
    some extraframework aluminum was also observed. The corresponding 19F NMR
    showed a dominant peak at -173 ppm with a shoulder at -182 ppm. Interestingly,
    these fluorinated species were associated with tetrahedral framework Al at 50 ppm,
    as revealed by 27Al/19F 2D HETCOR NMR for the first time. This observation
    implies that these fluorinated species are possibly due to the framework Al-F species.
    For HY samples treated with NH4F at 100oC, on the other hand, a broad powder
    pattern spreading from -20 ppm to -70 ppm due to the NH4AlF4 crystalline phase is
    observed for the cases of FNH4F/AlHY ≥ 2. The NH4AlF4 crystalline phase observed
    exhibited two 19F resonance peaks at -151 ppm and -166 ppm, which are assigned to
    the fluorine atoms in the terminal Al-F and bridging Al-F-Al group, respectively.
    Different aluminum fluoro-complexes after dealumination were detected. First, for
    NH4F treated HY, that tetrahedral aluminum was expelled from the zeolitic
    framework, resulting in the formation of (NH4)3AlF6, which was evident from the
    peak at -1 ppm in the 27Al MAS NMR and at -141 ppm in the 19F MAS NMR.
    In the second part of thesis, direct synthesis of well-ordered cubic mesoporous
    silicas SBA-1 with amino functionality group were direct-synthesized of containing
    simultaneously tetrathoxysilane (TEOS) and 3-aminopropyltrimethoxsilane (APTMS)
    and has been synthesized by cetyltriethylammonium bromide (CTEABr) under
    strongly acidic conditions.
    The materials obtained were characterized by variety of techniques including
    power X-ray diffraction (XRD),nitrogen sorption measurements, scanning electron
    microscopy (SEM), and thernmogravimetric analysis (TGA). Qualitative evidence of
    present of chemically atteched amino group moieties was provided by solid-state 13C
    and 29Si MAS NMR.

    中文摘要………………………………………………………………………... I 英文摘要………………………………………………………………………... III 謝誌……………………………………………………………………………... IV 目錄……………………………………………………………………………... V 圖目錄…………………………………………………………………………... IX 表目錄…………………………………………………………………………... XII PART I 氟化沸石………………………………………………….................... 1 第一章 緒論……………………………………………………………………. 1 1-1. 前言…………………………………………………………………….. 1 1-2. 沸石與分子篩………………………………………………………..… 2 1-3. Y 沸石………………………………………………………..……….. 7 1-4. 氟化反應……………………………………………………………….. 8 1-5. 脫鋁反應………………………………………...................................... 8 1-6. 固態核磁共振儀……………………………………….......................... 10 1-6-1. Zeeman 作用力………….…………………………………............ 11 1-6-2. 化學非均向位移 (Chemical Shift Anisotropy,CSA)…………… 11 1-6-3. 偶極-偶極交互作用力(Dipole-Dipole interactions)….…………... 12 1-6-4. 四極矩作用力 (Quadrupolar Interactions)…………….…………. 13 1-7. 固態核磁共振於沸石上之應用……………………………………….. 17 1-7-1. 魔角旋轉 (Magic Angle Spinning,MAS)...……………………… 18 1-7-2. 29Si NMR….…................................................................................... 19 1-7-3. 27Al NMR .…..…………………………………………................... 21 1-7-4. 19F NMR…………….…………………………………………........ 21 1-8. 研究動機與目的……………………………………….......................... 22 第二章 實驗部份………………………………………………………………. 24 2-1. 化學藥品……………………………………………………………….. 24 2-2. 實驗儀器設備….………………………………………………………. 25 2-3. 實驗步驟……….………………………………………………………. 25 2-3-1 Y 沸石在水溶液進行脫鋁、氟化反應………………………….. 25 VI 2-4 X 光粉末繞射儀 (Power X-ray diffactometer;XRD) 介紹……………. 26 2-5 固態核磁共振光譜儀技術介紹………………………........................... 26 2-5-1 去耦合作用…………………………………………………............ 27 2-5-2 交叉極化……………………………………………………............ 27 2-5-3 TRAPDOR 實驗…………..……………………………………….. 29 2-5-4 HETCOR 實驗……………………………………………………... 30 第三章 結果與討論…………………………………………………………... 33 3-1. 沸石HY 氟化系列……………………………………………………. 33 3-1-1. 27Al 與 19F MAS NMR 光譜分析………………………………… 33 3-1-2. 19F{27Al} TRAPDOR MAS NMR 結果分析……………………... 42 3-1-3. 27Al{19F} CP 實驗結果分析……………..…………….………….. 46 3-1-4. HETCOR—2D MAS NMR 實驗結果分析……………..…………. 48 3-1-5. XRD 圖譜分析…………….............................................................. 50 3-1-6. 29Si MAS NMR 實驗結果分析…………………………………... 52 3-1-7 兩種可能氟化沸石反應路徑分析………………………………… 56 3-1-8 29Si{19F} CP 實驗結果 ……………………………………………. 57 3-2 HY 100 度氟化系列………………………………….………………... 59 3-2-1 27Al 與 19F MAS NMR 光譜分析…………………..…………… 59 3-2-2 19F{27Al} TRAPDOR MAS NMR 結果分析……………………. 65 3-2-3 CP & HETCOR-2D MAS NMR 實驗結果光譜………………… 70 3-2-4 XRD 圖譜分析…………………………………………………… 75 3-2-5. NH4AlF4 結構與27Al MAS NMR 光譜比較 …………………… 78 第四章 結論…………………………………………………………………... 83 參考文獻………………………………………………………………………... 84 PART II…中孔洞材料胺基化之研究…………………………………………. 88 第一章 前言……………………………………………………………........ 88 1-1 中孔洞分子篩材料的歷史……………………………………………… 88 1-2 界面活性劑性質簡介…………………………………………………… 90 1-2.1 分子結構…………………………………………………………. 90 1-2.2 界面活性劑種類………………………………………………….. 91 1-2.3 界面活性劑聚集的結構………………………………………….. 92 VII 1-3 SBA-1 簡介………………….. ……………………………………......... 94 1-4.1 SBA-1的形成機制………………………………………………… 95 1-4.2 SBA-1 結構鑑定…………………………….……………………. 96 1-5 官能基化之中孔洞分子簡介……………………………….…………. 97 1-6 表面修飾中孔洞分子篩之應用………………………………………... 99 1-7 研究動機………………………….……………………………………. 101 第二章 實驗部分……………………………………………………………… 101 2-1 藥品…………………………………………………………………….. 102 2-2 實驗步驟…………………………………………………….…………. 103 2-2.1 合成界面活性劑 CTEABr……………………………………… 103 2-2.2 合成含胺基官能基的SBA-1(NH2-SBA-1)……………………. 103 2-2.3 以溶劑萃取法移除NH2-SBA-1 孔洞中的模板……………….. 103 2-3 實驗鑑定儀器…………………………………………………………. 103 2-4 鑑定儀器之原理……………………………………………………….. 104 2-4.1 X光繞射 (Powdr X-Ray Diffractometer;XRD)……………….. 104 2-4.2 氮氣吸脫附等溫曲線、表面積 與孔洞特性鑑定……………. 105 2-4.3 低真空掃描式電子顯微鏡 (LV-SEM)…………………………. 109 2-4.4 熱重分析儀 (Thermo Gravimetric Analyzer;TGA)…………... 109 第三章 結果與討論………………………………………………………....... 110 3-1 合成的中孔洞材料NH2-SBA-1………………….................................. 110 3-1.1 XRD 光譜分析……………………………………………… 110 3-1.4 29Si MAS NMR 結果分析………………................................... 113 3-2 改變酸的種類來合成的中孔洞材料NH2-SBA-1……………………. 115 3-2.1 XRD 光譜分析………………………………………………… 115 3-2.2 29Si MAS NMR 實驗分析……………….................................. 121 3-3 於硫酸下合成的中孔洞材料NH2-SBA-1……………………............. 123 3-3.1 XRD 光譜分析………………………………………………... 123 3-3.2 氮氣等溫吸脫附的結果分析……………………… ………. 128 3-3.3 13C CP/MAS NMR 的結果分析……………………………… 137 3-3.4 29Si MAS NMR 結果分析……………...................................... 139 3-3.5 TGA 結果分析………………………………………………… 146 VIII 3-3.6 SEM 結果分析………………………………………………… 148 3-4 添加 Sucrose 合成中孔洞材料NH2-SBA-1………………................. 150 3-4.1 XRD 光譜分析………………………………………………… 150 3-4.2 氮氣等溫吸脫附的結果分析………………………………….. 152 第四章結論……………………………………………………………….......... 155 參考文獻.………………………………………………………………............ 156

    1. IUPAC Manual of Symbols and Terminology, appendix 2, Part 1,
    Colloid and Surface Chemistry, Pure Appl. Chem, 1972, 31, 578.
    2. Breck, D. W. Zeolite Molecular Sieves, Wiley :New York, 1974
    3. McVain, J. W. The Sorption of Gases and Vapors by solids Ruthedge
    and Sons, London, Chapter5 1932.
    4. Bennett, J. M.; Blackwell, C. S.; Cox, D. E. Interzeolite Chemistry,
    Am. Chem. Soc. Symp. Ser.218, American Chemical Society,
    Washington, D. C., 1983.
    5. 吳榮宗, 工業觸媒概論, 增訂版, 國興出版社, 1989.
    6. Meier, W. J.; Olson D. Altas of Zeolite Structure types, Butterworths,
    London, 1992.
    7. 趙桂蓉, 科學月刊, 1990年10月, 250期
    8. Sanchez, N. A.; Saniger, J. M.; Caillerie, J. B.; Blumenfeld, A. L.;
    Fripiat, J. J. J. Catal. 2001, 201, 80.
    9. LeVan Mao, R.; Le, T. S.; Fairbairn, M.; Muntasar, A.; Xiao, S.;
    Denes, G. Appl. Catal., A 1999, 185, 41.
    10. Kowalak, S.; Szymkowiak, E.; Laniecki, M. J. Fluorine Chem. 1999,
    93, 175.
    11. Borade, R. B.; Clearfield, A. J. Chem. Soc., Faraday Trans. 1995, 91,
    539.
    12. Kollmer, F.; Hausmann, H.; Houlderich, W. F. J. Catal. 2004, 227,
    408.
    13. Kollmer, F.; Hausmann, H.; Houlderich, W. F. J. Catal. 2004, 227,
    398.
    14. Becker, K. A.; Kowalak, S. J. Chem. Soc., Faraday Trans. 1 1987, 83,
    535.
    15. Parikh, P.A.; Subrahmanyam, N.; Bhat, Y.S.; Halgeri, A.B. J. Mol.
    Catal. 1994, 88, 85.
    16. Rachwalik, R.; Olejniczak, Z.; Sulikowski, B. Catal. Today, 2005 ,101,
    147–154
    17. Apelllian, M.R.; Fung, A.S.; Kennedy, G.J.; Degnan, T.F. J. Phys.
    Chem. 1996, 100, 16577.
    18. Gola, A.; Rebours, B.; Milazzo, E.; Lynch, J.; Benazzi, E.; Lacombe,
    S.; Delevoye, L.; Fernandez, C.; Micropor. Mesopor. Mater. 2000, 40,
    85
    73-83
    19. Bowes, E.; Pelrine, B.P. US Patent 1983, 4388177.
    20. Beyerlein, R.A.; Kugler, E.L.; Tunison, M.E.; Vaughan, D.E.W. EP
    US Patent 1991, 0259526B1.
    21. Apelian, M.R.; Degnan, T.F. ; Fung, A.S.; Kennedy, G.J. US Patent
    1993, 5200,168
    22. Apelian, M.R.; Degnan, T.F. US Patent 1993, 5238677.
    23. Weitkamp, J.; Sakuth, M.; Chen, C.; Ernst, S. J. Chem. Soc. Chem.
    Commun. 1989, 1908.
    24. Cañizares, P.; Carrero, A.; Appl. Catal. A, 2003, 248, 227–237
    25. Marques, J.P.; Gener, I.; Lopes, J.M.; Ribeiro, F.R.; Guisnet, M.; Appl.
    Catal. A, 2006, 301, 96–105
    26. Ribeiro Carrott, M.M.L.; Russo, P.A.; Carvalhal, C.; Carrott, P.J.M.;
    Marques, J.P.; Lopes, J.M.; Gener, I.; Guisnet, M.; Ramoa Ribeiro, F.
    Micropor. Mesopor. Mater. 2005, 81, 259-267
    27. Han, S.; Shihabi, D.S.; Chang, C.D.; J. Catal. 2000, 196, 375–378
    28. Kumar, S.; Sinha, A.K.; Hegde, S.G.; Sivasanker, S. J. Mol. Catal.
    A.:2000, 154, 115–120
    29. Breck, D.W.; Blass, H.; Skeels, G.W. US Patent. 1985, 4503023
    30. Garralón G.; Fornes V.; Zeolites , 1988, 8,268-272
    31. CRUZ, J.M.; CORMA, A.; FORNES, V. Appl. Catal., 1989, 50,
    287-293
    32. Triantafillidis, C. S.; Vlessidis, A. G.; Evmiridis, N. P. Ind. Eng. Chem.
    Res. 2000, 39, 307-319
    33. Corma, A.; For V.; Martinez, A.; Orchilles, V.; Flank, W.H.; Whyte,
    T.E. (Editors), Perspectives in Molecular Sieve Science, ACS Symp.
    Ser., No. 368, American Chemical Society, Washington, DC, 1988,
    Ch. 35, p. 542.
    34. Pine, L.A.; Maher, P.J.; Watcher, W.A.; J. Catal. 1984, 85, 466.
    35. Melinda, J.D. Solid-State NMR Spectroscopy Principles and
    Applications, Blackwell Science, 2002.
    36. Wang, Q.L.; Torrealba, M.; Giannetto, G; Guisnet, M.; Perot, G.
    Zeolites,1990, 10, 703-706
    37. Corma,A.;Martfnez, A.; Arroyo, P.A.; Monteiro, J.L.F.; Sousa-Aguiar,
    E.F.; Appl. Catal. A, 1996, 142, 139-150
    38. Triantafillidis, C. S.; Vlessidis, A.G; Nalbandian, L.; Evmiridis, N.P.
    Micropor. Mesopor. Mater. 2001, 47,369-388
    39. Kao, H.M.; Chen, Y-C. J. Phys. Chem. B.; 2003; 107, 3367-3375.
    86
    40. Kao, H.M. ;Chang,P.C. J. Phys. Chem. B.; 2006; 110, 39.
    41. Manzer, L.E.; Science, 1990, 249, 31
    42. Manzer, L.E.; Rao, V.N.M.; Adv. Catal., 1993, 39,329
    43. Kemnitz, E.; Menz, D. H.; Prog. Solid State Chem. 1998, 26, 97.
    44. Zhang,W.,Sun,M.,Prins,R., J. Phys. Chem. B. 2002, 106, 11805-11809
    45. Sánchez, N.A.; Saniger, J.M.; Caillerie, J.B.D.; Blumenfeld, A.L.;
    Fripia, J.J. J. Catal. 2001, 201, 80-88.
    46. Voegtlin, A.C.; Ruch, F.; Guth, J.L.; Patarin, J.; Huve, L. Micro. Mater
    1997, 9, 955105
    47. Martinez, E. J.; Girardet, J.-L.; Morat, C. Inorg. Chem. 1996, 35, 706.
    48. Lu, B.; Tsuda, T.; Sasaki, H.; Oumi, Y.; Itabashi, K.; Teranishi, T.;
    Sano, T. Chem. Mater. 2004, 16, 286-291
    49. Panov, A.G.; Gruver, V.; Fripiat, J.J. J. Catal. 1997, 168, 321
    50. Ghosh, A. K.; Kydd, R. A. J. Catal. 1987, 103, 399
    51. Levitt, M. H.; Freeman, R.; Frenkiel, T. J. Magn. Reson. 1982, 50,
    157-160.
    52. Shaka, A.J.; Barker, P.B.; Freeman. R. J. Magn. Reson. 1985, 64,
    547-552
    53. Bennett,A.E.; Rienstra, C.M.; Auger, M.; Lakshmi, K.V.; Griffin, R.G.
    J. Chem. Phys. 1995, 103. 6951-6958.
    54. Fyfe, C. A.; Muler, K. T.; Grondey, H.; Wong-Moon, K. C. J. Phys.
    Chem. 1993, 97, 13484.
    55. Beck, L. W.; White, J. L.; Haw, J. F. J. Am. Chem. Soc. 1994, 116,
    9657.
    56. Deng, F.; Du, Y.; Ye, C.; Wang, J.; Ding, D.; Li, H. J. Phys. Chem. B,
    1995, 99, 15208.
    57. Fyfe, C. A.; Wong-Moon, K. C.; Huang, Y.; Grondey, H.; Muler, K.
    T.; J. Phys. Chem. 1995, 99, 8707
    58. Grey, C. P.; Vega, A. J. Am. Chem. Soc. 1995, 117, 8232.
    59. Trebosc, J.; Wiench, J.W.; Huh, S.; Lin, V.S.-Y.; Pruski, M. J. Am.
    Chem. Soc. 2005, 127, 1587 .
    60. Gilson, J.P.; Edwards, G.C.; Peters, A.W.; Rajagopalan, K.;
    Wormsbecher, R.F.; Roberie, T.G.; Shatlock, M.P. J . Chem. Soc.,
    Chem. Commun., 1987, 91-92
    61. Miller, J.M. Progress in Nucl. Magn. Reson. Spec. 1996, 28, 255-281.
    62. Sánchez, N.A.; Saniger, J.M.; Caillerie, J.B.E.; Blumenfeld, A.L.;
    Fripiat, J.J. Micropor. Mesopor. Mater. 2001, 50,41-52
    63. Chupas, P. J.; Ciraolo, M. F.; Hanson, J. C.; Grey, C. P. J. Am. Chem.
    87
    Soc. 2001, 123, 1694
    64. Lacassagne, V.; Bessada, C.; Florian, P.; Bouvet, S.; Ollivier, B. J.
    Phys. Chem. B 2002, 106, 1862-1868.
    65. Herron, N.; Thorn, D. L.; Harlow, R. L.; Davidson, F. J. Am. Chem.
    Soc. 1993, 115, 3028Frydman, L.; Harwood, J. S. J. Am. Chem. Soc.
    1995, 117, 5367.
    66. Grey, C. P.; Corbin, D. R. J. Phys. Chem. 1995, 99, 16821.
    PART II
    參考文獻
    1. McBain, J.W. The Sorption of Gases and Vapours by Solid, Rutledge
    and Sons, London, Ch . 5, 1932
    2. Bhatia, S. Zeolite catalysis principles and application, CRC press,
    Florida,1990.
    3. Imelik, B.; Naccache, Y.; Vedrine, J. C.; Coudurier, G.; Praliaud, H.
    Catalysis by zeolite, Elesevier, Amstordam, 1980.
    4. Ward, W.J. Molecular sieve catalysts, in applied industrial catalysis,
    Vol.3, Academic press, New York, 1984.
    5. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli J. C. and Beck, J.
    S.Nature, 1992 ,359 ,710.
    6. Beck, J. S ;Vartuli, J. C.; Roth, W. J. ; Leonowicz, M. E.; Kresge, C. T.
    Schmitt, K.D.; Chu, C. T – W.; Olson, D. H.; Sheppard, E. W.; Higgins,
    S. B. and Schlenker, J. L. J. Am. Chem. Soc., 1992, 114, 10834
    7. Sayari, A. Chem. Mater., 1996, 8, 1840.
    8. Neumann, R.; Khenkin, K. Chem. Commun. 1996, 23, 2643.
    9. Hartmann, M.; Popll, A.; Kenven, L. J. Phys. 1996, 100, 9906.
    10.Corma, A.; Navarro, M. T. ; Perez – Pariente, J. ; Sanchez, F. Stud.
    Surf.Sci. Catal. 1994, 84, 69.
    11. Wu, C. G.; Bein, T. Science, 1994, 266, 1757.
    12. Wu, C. G.; Bein, T Science, 1994, 266, 1013.
    13. Wu, C. G.; Bein, T Chem. Mater., 1994, 6, 1109
    14. Ko, C. H.; Ryoo, R. J. Chem. Commun., 1995, 2467.
    15. Tsang, S. C.; Davis, J. J.; Green., M. L. H.; Hill, H. A. O.; Leung, Y.
    157
    C.; Sadler, P.J. J. Chem. Soc. Che. Commun., 1995, 1803.
    16. Abe, T.; Tachibana, Y.; Uemtsu, T.; Iwamoto, M. J. Chem. Soc.,
    Chem.Commun., 1995,1617
    17. Vartuli, J. C.; Kresge, C. T.; Roth, W. J.; McCullen, S. B.; Beck, J. S.;
    Schmitt, K. D.; Leonowicz, M. E.; Lutner, J. D.; E. W. Sheppard in
    Advanced Catalysis and Nanostructured Materials: Modern Synthesis
    Methods (Ed: W. R. Moser), Academic Press, New York, 1996,
    pp.1-19.
    18. IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1,
    Colloid and Surface Chemistry, Pure Appl. Chem. 1972, 31, 57-638.
    19. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. J. Chem. Soc.
    Faraday Trans. 1976, 72, 1525-1568.
    20. Tanford, C.The Hydrophobic Effect: Formation of Micelles and
    Biological Membranes, Wiley, New York, 1973
    21. Evans, F. D.The Colloidal Domain, 2nd Ed, VHC, New York, 1999.
    22. Qi, L.; Ma, J.; Cheng, H.; Zhao, Z. Colloids and Surfaces A, 1996,
    111, 195-202
    23 Huo,Q.;Margolese,D.I.;Ciesla, U.; Feng, P.; Gier, T. E.; Sieger,P.;Leon,
    R.Nature.1994,368, 317-321.
    24 Shinji I, Shiyou G, Yoshiaki F. J. Am. Chem. Soc. 1999, 121,
    9611-9614
    25 Hyung Ik Lee, Chanho Pak, Seung Hwan Yi, Jeong Kuk Shon, Sung
    Soo Kim. J. Mater. Chem., 2005, 15, 4711–4717
    26. Schubert, U.; Husing, N. Synthesis of inorganic materials, chapter 4 ,
    158
    Wiley-Interscience publications: New York, 2000.
    27. Kim, M. J.; Ryoo, R. Chem. Mater. 1999, 11, 487-491
    28. Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.;
    Stucky, G.; Shin, H. J.; Ryoo, R. Nature 2000, 408, 449-453
    29. Liu, J. Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim. A. Y.; Gong, M. L.
    Adv. Meter. 1998, 10, 161-165.
    30. Stein, A.; Melde, B. J.; Schroden, R. C. Adv. Meter. 2000, 12,
    1403-1419.
    31. Fowler, C. E.;Burkett, S. L.;Mann, S. Chem. Commun. 1997, 1769.
    32. Steel, A.; Carr, S. W.; Anderson, M. W. Chem. Mater. 1995, 7,
    1829-1832.
    33. Asefa, T.; Kruk, M.; MacLachlan, M. J.; Coombs, N.; Grondey, H.;
    Jaroniec, M.; Ozin, G. A. Adv. Funct. Mater. 2001, 11, 447-456
    34. Shan Z,Lian G,Journal of Solid State Chemistry 152, 447}452 (2000)
    35. Che, S.; Garcia-Bennett, A. E.Nature Mater. 2003, 2, 801.
    36. Lei, C.; Shin, Y.; Liu, J.; Ackerman, E. J. J. Am. Chem. Soc. 2002,
    124, 11242.
    37. Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E. J. Am. Chem.
    Soc. 1940, 62, 1723-1732.
    38. Hiemenz, P. C.; Rajagopalan, R. “Principles of Colloid and Surface
    Chemistry”, Marcel Dekker, New York, 1997
    39. Toshiyuki Y, Hideaki Y. J. Mater. Chem. 2006,16,1125-1135
    40. Engelhardt, G.; Michel, D. “High-Resolution Solid-State NMR of
    Silicates and Zeolites”, John Wiley & Sons Inc, New York. 1988

    QR CODE
    :::