| 研究生: |
邱冠博 Kuan-Po Chiu |
|---|---|
| 論文名稱: |
Ka/K-Band立方衛星通訊酬載設計、實現及驗證於MPSoC高通量軟體定義無線電平台 The Design, Implementation and Verification of High-Throughput Software-Defined Radio with MPSoC as a Ka/K-Band Communication Payload for CubeSats |
| 指導教授: |
林映岑
Ying-Tsen Lin 陳逸民 Yih-Min Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學與工程學系 Department of Space Science and Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 156 |
| 中文關鍵詞: | LEO 低軌道衛星 、立方衛星 、通訊酬載 、軟體定義無線電 |
| 外文關鍵詞: | LEO satellite communication, high-throughput satellite |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著5G-NTN以及星鏈的發展,低軌道衛星通訊成為熱門的研究項目。而衛星對地端的閘口(Gateway)是連接用戶到中央伺服器的骨幹網路連接口,對資料傳輸帶寬有極大的要求,因此通常使用高頻率的波段作為載波。而Ka波段通訊酬載,在提供高速數據傳輸能力的同時,通常對功耗跟衛星載體空間有一定的要求,主要適用於較大的衛星。
因此在此研究中,專注於設計和實現一種專為CubeSat上的Ka波段微型軟體定義無線電(MSDR)。通訊協定符合DVB-S2標準,具有高傳輸容量以及可變傳輸率等特色,以因應不同的通道環境,另外也實現了線性階頻率調制(LSFM)模式,提供超低發射功率下的可靠傳輸。此外,該研究基於Xilinx MPSoC以及ADI ADRV9009作為基頻處理單元,並搭配Ka/K波段的升降頻以及功率放大器,模組化軟硬體設計可輕鬆應用於未來的任務。此SDR為低地球軌道(LEO)中的CubeSat星座提供寬頻通信的可能性。
Ka-Band communication payloads, enabling high-rate data transmission, typically require higher power consumption, are mostly more suitable for larger satellites. This research focuses on the design and the implementation of a miniature software-defined radio (MSDR) specifically tailored for Ka-band communication onboard CubeSats. The communication system aligns with the DVB-S2 standard for high transmission capacities, and incorporates the linear-step frequency modulation (LSFM) for robust transmission. Additionally, the modular software design can be easily adopted for future missions. The proposed Xilinx MPSoC-based SDR opens possibilities of broadband communication for CubeSat constellations in low Earth orbits (LEOs).
[1] European Space Agency, Satellite Frequency Bands, Accessed on 5 October 2019, https://www.esa.int/Applications/Connectivity_and_Secure_Communications/Satellite_frequency_bands
[2] Radiocommunication Sector of International Telecommunication Union, (2012), Attenuation by atmospheric gases, Recommendation ITU-R P.676-9
[3] Release 17 Description, 3GPP TR 21.917, 3rd Generation Partnership Project, 2020 https://www.3gpp.org/specifications-technologies/releases/release-17
[4] X. Lin, S. Rommer, S. Euler, E. A. Yavuz and R. S. Karlsson, "5G from Space: An Overview of 3GPP Non-Terrestrial Networks," in IEEE Communications Standards Magazine, vol. 5, no. 4, pp. 147-153, December 2021, doi: 10.1109/MCOMSTD.011.2100038
[5] N. P. Lawrence, B. W. . -H. Ng, H. J. Hansen and D. Abbott, "5G Terrestrial Networks: Mobility and Coverage—Solution in Three Dimensions," in IEEE Access, vol. 5, pp. 8064-8093, 2017, doi: 10.1109/ACCESS.2017.2693375
[6] Phillip M. Feldman, Polarization Mismatch Loss Calculator, 2021, https://phillipmfeldman.org/Engineering/pol_mismatch_loss.html
[7] The European Telecommunications Standards Institute. (2014). DVB-S2 EN 302 307-1 V1.4.1 (2014-11). Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications; Part 1: DVB-S2
[8] Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications; Part 2: DVB-S2 Extensions (DVB-S2X), EN 302 307-2 V1.1.1, ETSI, 2015-02.
[9] Zhao, K., Zhao, W., Sun, H., Zhang, T., Zhang, X., & Zheng, N. (2013). LDPC-in-SSD: making advanced error correction codes work effectively in solid state drives. USENIX Conference on File and Storage Technologies.
[10] Cakaj, S., Kamo, B., Koliçi, V., & Shurdi, O. (2011). The Range and Horizon Plane Simulation for Ground Stations of Low Earth Orbiting (LEO) Satellites. Int. J. Commun. Netw. Syst. Sci., 4, 585-589.
[11] Ferré, Guillaume and Audrey Giremus. “LoRa Physical Layer Principle and Performance Analysis.” ICECS 2018 25th IEEE International Conference on Electronics Circuits and Systems, 2018, doi: 10.1109/ICECS.2018.8617880.
[12] Yang, Z., W. Xiong and Y. Zhao, "Software Defined Radio Hardware Design on ZYNQ for Signal Processing System," 2019 8th International Symposium on Next Generation Electronics (ISNE), pp. 1-3, 2019, doi: 10.1109/ISNE.2019.8896380.
[13] Kumar, N., M. Rawat and K. Rawat, "Software-Defined Radio Transceiver Design Using FPGA-Based System-on-Chip Embedded Platform With Adaptive Digital Predistortion," in IEEE Access, vol. 8, pp. 214882-214893, 2020, doi: 10.1109/ACCESS.2020.3041463.
[14] Weiss, Lora G. "Wavelets and Wideband Correlation Processing". IEEE Signal Processing Magazine, pp. 13–32, Jan 1994.
[15] Najmi, “The Wigner Distribution: A Time-frequency Analysis Tool”, Johns Hopkins APL Technical Dig. (Applied Physics Laboratory), Vol. 18, No. 1., pp. 134-139, 1994.
[16] Chen, Y.M., S.C. Liao and Y.C. Chen. “Implementation of a Low-Rate Linear Step FM Transceiver on a Software Defined Radio Platform”. Wireless and Satellite Systems. WiSATS 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 186. pp 47–54, 2017, https://doi.org/10.1007/978-3-319-53850-1_6
[17] linux-kernel-labs.github.io, The Linux Kernel, https://www.form3.tech/blog/engineering/linux-fundamentals-user-kernel-space
[18] Wikiwand, Protection ring, https://www.wikiwand.com/en/Protection_ring
[19] Devicetree.org, “Devicetree Specification Release v0.4”, June 28, 2023, https://www.devicetree.org/specifications
[20] J. D. Anderson, J. C. Leavitt and M. J. Wirthlin, "Neutron Radiation Beam Results for the Xilinx UltraScale+ MPSoC," 2018 IEEE Radiation Effects Data Workshop (REDW), Waikoloa, HI, USA, 2018, pp. 1-7, doi: 10.1109/NSREC.2018.8584297.
[21] C. M. Fuchs et al., "A Fault-Tolerant MPSoC For CubeSats," 2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), Noordwijk, Netherlands, 2019, pp. 1-6, doi: 10.1109/DFT.2019.8875417.
[22] Xilinx, Libmetal and OpenAMP User Guide, UG1186 (v2019.1) May 22, 2019
[23] Etienne Tisserand, Yves Berviller. Design and implementation of a new digital automatic gain control. Electronics Letters, 2016, 52 (22), pp.1847 - 1849. ff10.1049/el.2016.1398ff. ffhal-01397371f
[24] Qasim Chaudhari, Wireless Communications from the Ground Up v2.4, 2018
[25] Antiufrieva, L., K. Iansitov, A. Ivchenko and A. Dvorkovich, "Features of Frequency Synchronization Algorithms DVB-S2(X) for LEO Satellites," 2021 23rd International Conference on Digital Signal Processing and its Applications (DSPA), pp. 1-4, 2021, doi: 10.1109/DSPA51283.2021.9535822.
[26] Park, J. W., Hyoung Jin Yun, Myung Hoon Sunwoo, Pansoo Kim and Dae-Ig Chang, "Efficient coarse frequency synchronizer using serial correlator for DVB-S2," 2008 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1520-1523, 2008, doi: 10.1109/ISCAS.2008.4541719.
[27] Matlab, DVB-S2 HDL PL Header Recovery, https://www.mathworks.com/help/wireless-hdl/ug/dvb-s2-hdl-pl-header-recovery.html
[28] Liao, X. -Q. and Y. -M. Chen, "An Efficient Joint Frame and Physical Layer Signaling Code Detection Method for DVB-S2," in IEEE Access, vol. 12, pp. 41727-41733, 2024, doi: 10.1109/ACCESS.2024.3378292