跳到主要內容

簡易檢索 / 詳目顯示

研究生: 游朝廷
Chao-Ting Yu
論文名稱: 摻雜奈米銀粒子以提升可撓式基板導熱係數之研究
指導教授: 韋安琪
An-Chi Wei
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 光機電工程研究所
Graduate Institute of Opto-mechatronics Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 74
中文關鍵詞: 毫發光二極體微發光二極體軟性基板熱傳導係數散熱奈米銀
外文關鍵詞: mini-LED, micro-LED, flexible substrate, thermal conductivity, heat dissipation, nanosilver
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 毫發光二極體(mini light-emitting diodes, mini-LEDs)及微發光二極體(micro light-emitting diodes, micro-LEDs)是現今最具發展潛力的顯示元件,然而不論是作為背光源或是顯示器本身,都存在越來越高的熱管理需求。本研究提出一改良式軟性基板,供可撓式mini-LED及micro-LED使用,以提升其散熱能力,進而延長元件之壽命。本研究實際製備該改良式軟性基板,並以熱傳導係數儀、導熱係數實驗,以及熱模擬模型佐證其導熱係數上升之趨勢;且以X射線螢光光譜儀檢測添加物之實際含量,以確認基板之導熱係數與添加物含量之關係;又以可見光光譜儀量測基板之可見光穿透頻譜,分析其作為發光元件基板的潛力與挑戰。


    Mini light-emitting diodes (mini-LEDs) and micro light-emitting diodes (micro-LEDs) are the most promising display components nowadays. Whether it is the backlight unit or the display itself, there is an increasing demand for thermal management. In this study, an improved flexible substrate is proposed as a substrate of the flexible mini-LED or the micro-LED to improve the heat dissipation capability and prolong the life of the device. The improved flexible substrate has been fabricated. The thermal conductivity analyzer, thermal conductivity experiment, and thermal simulation model were used to verify the thermal conductivity. Additionally, X-ray fluorescence spectrometer was used to verify the actual content of the filler and then to confirm the relationship between thermal conductivity of the substrate and its filler content. The visible spectrophotometer was used to measure the transmittance spectrum of the substrate for analyzing its potential and characteristics.

    摘要 i Abstract ii 致謝 iii 目錄 vi 圖目錄 viii 表目錄 x 第一章、緒論 1 1-1 研究背景 1 1-2 可撓式基板提升導熱係數之發展 3 1-3 研究目的 5 1-4 研究之貢獻 5 1-5 論文架構 6 第二章、基礎理論與原理 7 2-1 發光二極體之發熱原理 7 2-2 熱量傳遞原理 10 2-3 固體熱傳導原理 14 第三章、基板製備與量測方法 16 3-1 改良式PI基板之材料與製備流程 16 3-2 基板銀元素占比量測 21 3-3 導熱係數量測 23 3-3-1 熱傳導係數儀(Thermal Conductivity Analyzer) 23 3-3-2 PI基板表面溫度量測實驗 27 第四章、模擬架構與方法 30 4-1 水泥電阻熱模擬模型 31 4-2 水泥電阻加熱PI基板之熱模擬模型 39 4-3 小結 41 第五章、結果與討論 42 5-1 銀元素含量量測結果 42 5-2 水泥電阻溫度熱特性之模擬與實驗 43 5-3 導熱係數量測結果 49 5-4 小結 50 第六章、結論與未來展望 51 6-1 結論 51 6-2 未來展望 51 參考文獻 53 附錄 56 可見光穿透率量測 56 可見光穿透率量測結果 59

    [1] B. Johnstone, Brilliant!: Shuji Nakamura and the Revolution in Lighting Technology. Prometheus Books 2007, pp. 103–104.
    [2] T. Pulli, T. Dönsberg, T. Poikonen, F. Manoocheri, P. Kärhä, and E. Ikonen, "Advantages of white LED lamps and new detector technology in photometry," Light: Science & Applications, 4, pp. e332-e332, 2015
    [3] A. Khazanchi, A. Kanwar, L. SALUJA, A. DAMARA, and V. DAMARA, "OLED: A New Display Technology," International Journal Of Engineering And Computer Science, 1, pp. 75-84, 2012.
    [4] Y. Huang, E. L. Hsiang, M. Y. Deng, and S. T. Wu, "Mini-LED, Micro-LED and OLED displays: present status and future perspectives," Light Sci Appl, 9, p. 105, 2020
    [5] C. Huang, X. Qian, and R. Yang, "Thermal conductivity of polymers and polymer nanocomposites," Materials Science and Engineering: R: Reports, 132, pp. 1-22, 2018
    [6] K. T. S. Kong, M. Mariatti, A. A. Rashid, and J. J. C. Busfield, "Effect of processing methods and functional groups on the properties of multi-walled carbon nanotube filled poly(dimethyl siloxane) composites," Polymer Bulletin, 69, pp. 937-953, 2012
    [7] H.-S. Chuang and S. Wereley, "Design, fabrication and characterization of a conducting PDMS for microheaters and temperature sensors," Journal of Micromechanics and Microengineering, 19, 2009
    [8] H. S. Tekce, D. Kumlutas, and I. H. Tavman, "Effect of Particle Shape on Thermal Conductivity of Copper Reinforced Polymer Composites," Journal of Reinforced Plastics and Composites, 26, pp. 113-121, 2016
    [9] Q. H. Mu, D. Peng, F. Wang, J. H. Li, and S. Zhang, "Thermal Conductivity of Silicone Rubber Filled with Al2O3," Materials Science Forum, 987, pp. 59-63, 2020
    [10] B. Lee, J. Z. Liu, B. Sun, C. Y. Shen, and G. C. Dai, "Thermally conductive and electrically insulating EVA composite encapsulant for solar photovoltaic (PV) cell," Express Polymer Letters, 2, pp. 357-363, 2008
    [11] Z. Han, J. W. Wood, H. Herman, C. Zhang, and G. C. Stevens, "Thermal properties of composites filled with different fillers.," IEEE, 18 July 2008
    [12] I.-L. Ngo, S. Jeon, and C. Byon, "Thermal conductivity of transparent and flexible polymers containing fillers: A literature review," International Journal of Heat and Mass Transfer, 98, pp. 219-226, 2016
    [13] H. Ma et al., "Strategies for enhancing thermal conductivity of polymer-based thermal interface materials: a review," Journal of Materials Science, 56, pp. 1064-1086, 2020
    [14] S. L. Chuang, Physics of Optoelectronic Devices. Wiley-Interscience, 1995, pp. 37-39.
    [15] N. K. Dutta and R. J. Nelson, "The case for Auger recombination in In1−xGaxAsyP1−y," Journal of Applied Physics, 53, pp. 74-92, 1982
    [16] A. S. Pratiyush, S. Krishnamoorthy, R. Muralidharan, S. Rajan, and D. N. Nath, "Advances in Ga2O3 solar-blind UV photodetectors," in Gallium Oxide, 2019, pp. 369-399.
    [17] F. Kreith, R. M. Manglik, and M. S. Bohn, Principles of Heat Transfer. Cengage Learning, 2010, pp. 9-16.
    [18] F. Kreith, R. M. Manglik, and M. S. Bohn, Principles of Heat Transfer. Cengage Learning, 2010, pp. 17-20.
    [19] V. P. Astakhov and S. Joksch, Metalworking Fluids (MWFs) for Cutting and Grinding: Fundamentals and Recent Advances. Elsevier, 2012, p. 150.
    [20] Z. Han and A. Fina, "Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review," Progress in Polymer Science, 36, pp. 914-944, 2011
    [21] Y. Zhao, X. Zeng, L. Ren, X. Xia, X. Zeng, and J. Zhou, "Heat conduction of electrons and phonons in thermal interface materials," Materials Chemistry Frontiers, 5, pp. 5617-5638, 2021
    [22] X. Xu, J. Chen, J. Zhou, and B. Li, "Thermal Conductivity of Polymers and Their Nanocomposites," Adv Mater, 30, p. e1705544, Apr 2018
    [23] X. He and Y. Wang, "Recent Advances in the Rational Design of Thermal Conductive Polymer Composites," Industrial & Engineering Chemistry Research, 60, pp. 1137-1154, 2021
    [24] H. H. Huang, "Thermal analyses and flexible substrate modification for improving lifetime of organic light-emitting diodes," Master, Opto-Mechatronics, Mechanical Engineering, National Central University, 2019.
    [25] P. Warrier and A. Teja, "Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles.," Nanoscale Research Letters, 6, 2471556-276X, 2011.
    [26] Bruker. "S8 TIGER Series 2 Specifications." Bruker. https://www.bruker.com/en/products-and-solutions/elemental-analyzers/xrf-spectrometers/s8-tiger.html
    [27] "TPS 3500熱傳導係數儀產品簡介。." Techmark Precision Instrument Co.,Ltd. https://www.techmaxasia.com/catalog-detail/TPS3500/
    [28] 22007-2, ISO, Switzerland, 2008.
    [29] Tektronix. Series 2400 SourceMeter® Quick Start Guide
    [30] InfraTec. VarioCAM® hr head User Manual
    [31] "一般耐火鑄料性質." YU HO REFRACTORIES Co., LTD. http://www.yuhonet.com.tw/03/0202.htm
    [32] W. H. McAdams, Heat Transmission. McGraw-Hill, 1954, pp. 165-183.
    [33] Y. Zhou, L. Wang, H. Zhang, Y. Bai, Y. Niu, and H. Wang, "Enhanced high thermal conductivity and low permittivity of polyimide based composites by core-shell Ag@SiO2 nanoparticle fillers," Applied Physics Letters, 101, 2012
    [34] (2004). NIEA-PA103, PA103環境檢驗檢量線製備及查核指引931129勘誤.
    [35] O. Photonics. micro spectrometer SE1020/2020 Series specifications [Online] Available: http://www.comfort.net.tw/oto_pdf/SE_series.pdf
    [36] I. Peccell Technologies. "PEC-L11 specifications." Peccell Technologies, Inc. https://secure02.blue.shared-server.net/www.peccell.com/products/m_e.html
    [37] A. Abe, T. Nakano, W. Yamashita, K. Fukukawa, M. Okazaki, and S. Tamai, "Theoretical and experimental studies on the mechanism of coloration of polyimides," Chemphyschem, 12, pp. 1367-77, 2011

    QR CODE
    :::