| 研究生: |
陳冠銘 Kuan-ming Chen |
|---|---|
| 論文名稱: |
高壓系統下親/疏水性吸附劑之吸附行為與再生能耗探討 |
| 指導教授: |
康育豪
周正堂 Cheng-tung Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 水汽吸附 、變溫吸附 、吸附乾燥機 |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
壓縮乾燥空氣係經空氣壓縮機與穩壓儲存桶降溫後,先經冷凍乾燥設備除濕,再以無熱式或加熱式雙塔吸附乾燥設備將高壓空氣乾燥至壓力露點溫度-40℃或-70℃。為了尋找具節能且適用於壓縮空氣吸附乾燥設備之吸附劑,本研究於高壓系統狀態下,探討不同吸附劑表面特性對吸附/脫附現象之影響與再生能耗分析。其中4A、13X、Al2O3、ZSM-5-260、ZSM-5-38作為主要吸附劑應用於壓縮空氣系統之乾燥設備中,並進行減少能耗的脫附方法研究,以找到最適當之吸附劑以及吸附條件。並尋找最佳能耗的條件並符合高壓空氣使用之需求,以利將來應用於雙塔式加熱再生乾燥設備中。故本研究成果可提供壓縮空氣乾燥設備選取吸附劑時之節能參考。實驗結果顯示在高壓系統下活性氧化鋁有最低之能耗。
Compressed air is usually produced by air compressor, cooled down with the pressure-stabilized storage barrels and primarily dehumidified via refrigeration dryer. And then a heatless or heat-driven dual-bed adsorption dryer futhermore reduces moisture to reach dew point temperature of -40℃ or -70 ℃. In order to develop a high-efficiency energy-saving adsorbent in adsorption dryer, this study was to investigate the adsorption and desorption behavior and regeneration energy consumption affected by adsorbents characteristic at high pressure status. The adsorbents of 4A, 13X, ZSM-5-260, Al2O3 and ZSM-5-38 were measured in the study to find the lowest energy consumption and optimal desorption method. The results could be applied to screen the optimum adsorbents for high-efficiency thermal-regeneration adsorption dryer in compressed air system. In this research, experement results show that the adsorbent of the lowest regeneration energy consumption under high pressure system is activated alumina.
源查核與節能技術暨能管員推動節能交流研討會論文集,96年。
2. Compressed Air system Market Assessment In the Public Service Electric and Gas Service Territory. Public Service Electric and Gas Company, AMSG 7537-001, 2001
3. 2010中國無熱再生吸附式壓縮空氣乾燥機產業規劃及發展預測報告。
4. 莊朝焮, 壓縮空氣供氣系統節能手冊, 財團法人中技社節能技術發展中心,89年。
5. 李大明,王傑明,李彩琴, 壓縮機技術,第 2 期,page 29-32(1997).
6. M. Kruk and M. Jaroniec, “Application of Large Pore MCM-41 Molecular Sieves To Improve Pore Size Analysis Using Nitrogen Adsorption ,” Langmuir, vol.13, pp.6267-6273 (1997)
7. C. Liang, T. Man, and M. Kruk, “Synthesis of Ultra-Large-Pore SBA-15 Silica with Two-Dimensional Hexagonal Structure Using Triisopropyl benzene As Micelle Expander ,” Chem. Mater., vol.21, pp.1144–1153, 2009
8. R. T. Yang, “Gas Separation by Adsorption Processes,” Butterworth, New York , 1987
9. U. S. EPA. “Zeolite: A Versatile Air Pollutant Adsorber ,” EPA-456/F-98-004 , 1998
10. K.C. Chan, Christopher Y.H. Chao , G.N. Sze-To , and K.S. Hui, “Performance predictions for a new zeolite 13X/CaCl2 composite adsorbent for adsorption cooling systems ,” Int. J. Heat Mass Transfer, vol.55, pp.3214–3224, 2012
11. 方建能,江支豪,陳惠芬,蘇建華, 臺灣鑛業,第 62 卷第 3 期,page 11-20 ,2010.
12. A. Gorbach, M. Stegmaier and G. Eigenberger, “ Measurement and Modeling of Water Vapor Adsorption on Zeolite 4A—Equilibria and Kinetics ” , Adsorption, vol.10, pp.29–46 , 2004
13. http://www.molecularsieve.org/Zeolite_Molecular_Sieve.htm (2011)
14. 游振經, 於陶瓷纖維紙上合成 ZSM-5 沸石與聚乙烯觸媒裂解之研究,國立中央大學化工與材料工程學系碩士論文(2004).
15. M. E. Swanson, H. L. Greene, and S. Qutubuddin, “Reactive Sorption of Chlorinated VOCs on ZSM-5 Zeolites at Ambient and Elevated Temperatures,” Appl. Catal., B: Enviromental, Vol. 52, pp.91-108 , 2004.
16. A. Salden and G. Eigenberger, “Multifunctional Adsorber/Reactor Concept for Waste-Air Purification,” Chem. Eng. Sci, Vol. 56, pp. 1605-1611, 2001.
17. R. L. Fonseca, A. Aranzabal, and P. Steltenpohl, “Performance of Zeolites and Product Selectivity in the Gas-Phase Oxidation of 1,2-Dichloroethane,” Catal. Today, Vol. 62, pp. 367-377, 2000.
18. M. H. Stenzel, “ Remove Organics by Activated Carbon Adsorption”, Chemical Engineering Progress, Vol. 89, No. 7, pp. 36-43, 1993.
19. S. M. Ben-Shebil, “ Effect of heat of adsorption on the adsorptive drying of solvents at equilibrium in a packed bed of zeolite ”, Chem. Eng. J. vol.74, pp.197-204,1999.
20. P. Fastyn, W. Kornacki, T. Gierczak, J. Gawłowski, and J. Niedzielski,“Adsorption of water vapour from humid air by selected carbon adsorbents”, J. Chromatogr. A, vol.1078, pp7–12, 2005.
21. Metcalf and Eddy, “Wastewater engineering treatment and resuse, ” 4th ed., McGraw-Hill, New York, 2003.
22. M. N. Golubovic and W. M. Worek, “INFLUENCE OF ELEVATED PRESSURE ON SORPTION IN DESICCANT WHEELS”, Numerical Heat Transfer, Part A, vol:45, pp. 869–886, 2004
23. A. Srinivasan and M. W. Grutzeck, “The Adsorption of SO2 by Zeolites Synthesized from Fly Ash,” Environ. Sci. Technol., Vol. 33, No. 9, pp. 1464-1469 , 1999.
24. T. Kopac, “Non-Isobaric Adsorption Analysis of SO2 on Molecular Sieve 13X and Activated Carbon by Dynamic Technique,” Chem. Eng. Process., Vol. 38, pp. 45-53, 1999.
25. S. V. Gollakota and C. D. Chriswell, “Study of Adsorption Process Using Silicalite for Sulfur Dioxide Removal form Combustion Gases,” Ind. Eng. Chem. Res., Vol. 27, pp.139-143, 1988.
26. E. S. Kikkinides and R. T. Yang, “Gas Separation and Purification by Polymeric Adsorbents: Flue Gas Desulfurization and SO2 Recovery with Styrenic Polymers,” Ind. Eng. Chem. Res., Vol. 32, pp. 2365-2372 , 1993.
27. S. G. Deng and Y. S. Lin,“Sulfur Dioxide Sorption Properties and Thermal Stability of Hydrophobic Zeolites,” Ind. Eng. Chem. Res., Vol. 34, pp. 4063-4070 , 1995.
28. S. W. Blocki,“Hydrophobic Zeolite Adsorbent: A Proven Advancement in Solvent Separation Technology,” Environ. Prog., Vol. 12, pp. 226-230, 1993.
29. Yun, J. H. and D. K. Choi, “Adsorption of Organic Solvent Vapors on Hydrophobic Y-Type Zeolite,” AIChE J., Vol. 44, No. 6, pp.1344-1350, 1998.
30. T. Sano, N. Yamashita, Y. Iwami, K. Takeda, and Y. Kawakami “Estimation of dealumination rate of ZSM-5 zeolite by adsorption of water vapor”Zeolite s,Vol.16,258-264, 1996
31. P. G. Smirniotis and W. Zhang, “Effect of the Si/Al Ratio and of the Zeolite Structure on the Performance of Dealuminated Zeolites for the Reforming of Hydrocarbon Mixtures,” Industrial & Engineering Chemistry Research, Vol. 35, pp. 3055-3066 (1996).
32. R. V. Siriwardane, M. S. Shen, and E. P. Fisher, “Adsorption of CO2, N2, and O2 on Natural Zeolite,” Energy Fuels, Vol. 17, No.3, pp.571-576, 2003.
33. W.H. Lee and P.J. Reucroft, “Vapor adsorption on coal- and wood-based chemically activated carbons (I ) Surface oxidation states and adsorption of H2O ,” Carbon , vol.37, pp.7–14, 1999.
34. L. Qiu and V. Murashov, “Zeolite 4A: heat capacity and thermodynamic properties ,” Solid-State Sci., vol.2, pp.841–846 , 2000.
35. G. Landi, L. Lisi , R. Pirone, G. Russo and M. Tortorelli, “Effect of water on NO adsorption over Cu-ZSM-5 based catalysts”, Catal. Today, on line, 2012.
36. A. J. Fletcher, Y. Yuzak and K. M. Thomas, “Adsorption and desorption kinetics for hydrophilic and hydrophobic vapors on activated carbon”, Carbon,vol.44, pp.989–1004, 2006.
37. A.Gupta, V. Gaur, and N. Verma, “Breakthrough Analysis for Adsorption of Sulfur-Dioxide Over Zeolite,” Chem. Eng. Process., Vol.43, 9-22 , 2004.
38. J. C Atuonwu, J. Xin, G. van Stratena, H. C van Deventer, Antonius and J.B. van Boxtel,“Reducing energy consumption in food drying: opportunities in desiccant adsorption and other dehumidification strategies, ” Procedia Food Sci., vol.1, pp.1799 – 1805, 2011.
39. P. Scovazzo and A.J. Scovazzo, “Isothermal Dehumidification or gas drying Using vacuum sweep Dehumidification,” Appl. Therm. Eng., 2012
40. S.K. Seshadri, Y.S.Lin, “Synthesis and water vapor separation properties of puresilica and alumino silicate MCM-48membranes ,” Sep. Purif. Technol., vol.76 , pp.261–267, 2011.
41. A.E. Kabeel, “Adsorption–desorption operations of multilayer desiccant packed bed for dehumidification applications,” Renewable Energy vol.34, pp.255–265, 2009
42. K.S. Chang, H.C. Wang and T.W. Chung, “Effect of regeneration conditions on the adsorption dehumidification process in packed silica gel beds,” Appl. Therm. Eng., vol.24, pp.735–742, 2004.
43. A. Kodama, T. Hirayama, M. Goto, T. Hirose and R.E. Critoph, “The use of psychrometric charts for the optimization of a thermal swing desiccant wheel ,” Appl. Therm. Eng., vol.21, pp.1657-1674, 2001.
44. T. Yamamotoa, Y. H. Kimb, B. C. Kimb, A. Endoa, N. Thongprachana, and T. Ohmoria, “Adsorption characteristics of zeolites for dehydration of ethanol: Evaluation of diffusivity of water in porous structure ,” Chem. Eng. J., vol.181– 182,pp.443– 448, 2012.
45. K.R. Kim, M.S. Lee, S. Paek, S.P. Yim, D.H. Ahn, H. Chung, “Adsorption tests of water vapor on synthetic zeolites for an atmospheric detritiation dryer ,” Radiat. Phys. Chem., vol.76, pp.1493–1496 , 2007.
46. T. Wajima, K. Munakata, T. Takeishi , K. Hara , K. Wada, K. Katekari, K. Inoue, Y. Shinozaki, and K. Mochizuki, “Adsorption characteristics of water vapor on honeycomb adsorbents,” J. Nucl. Mater., Vol. 417, Issues 1–3, pp.1166–1169 , 2011.
47. ISO 7183 2007 Compressed-air dryer- Specifications and Testing
48. S. Ghorai and K.K. Pant, “Investigations on the column performance of fluoride adsorption by activated alumina in a fixed-bed,” Chem. Eng. J., vol.98, pp.165–173 , 2004.