| 研究生: |
黃瀚論 Han-Lun Huang |
|---|---|
| 論文名稱: |
以軟體為基準的助聽器模擬平台之發展-方向性麥克風 Development of a Software-Based Simulation Platform for Hearing Aid-Directional Microphone |
| 指導教授: |
吳炤民
Chao-Min Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 助聽器 、模擬平台 、麥克風 |
| 外文關鍵詞: | Hearing Aid, Microphone, Simulation Platform |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的為發展以軟體為基準的助聽器模擬平台,而在本論文中主要模擬助聽器上的麥克風策略,並且藉由我們的平台了解助聽器功能,提供給聽力受損者、臨床人員和醫生一個輔助工具,並且幫助聽力受損者選擇合適的助聽器。我們的助聽器模擬平台主要包含麥克風策略、噪音消除、與寬動態範圍壓縮(Wide Dynamic Range Compression, WDRC)。為了讓模擬平台能夠讓使用者選擇不同助聽器公司的策略,所以我們透過專利文獻來模擬出四家助聽器公司的麥克風策略,分別是GN ReSound Canta、Sonic Innovation Natura 、Siemens Aktiengesellschaft與Oticon Syncro,並且模擬出另外一種常用於麥克風策略上的Griffiths-Jim Beamformer演算法。透過主觀評量(波形圖、聲譜圖、聆聽聲音)與客觀評量(平均式訊噪比、對數頻譜失真)來評估麥克風策略以及麥克風策略與噪音消除策略結合後的噪音消除的效能。模擬結果顯示,麥克風策略的效能在主觀評量上我們可以發現波形與聲譜上的共振峰變清楚,且透過聆聽聲音發現語音品質被改善許多,另外透過客觀評量發現四家公司麥克風策略都有效提升訊噪比4到6 dB,而Griffiths-Jim Beamformer麥克風策略效果提高了3到4 dB。接著我們將四家公司的麥克風策略和Griffiths-Jim Beamformer麥克風策略各別與各家不同公司的噪音消除策略做結合後,再與WDRC結合,結果顯示更能改善語音信號的訊噪比。
The purpose of this research is to develop a software-based simulation platform for hearing aid. In this thesis, the main focus was on the microphone processing strategy for hearing aid. This study provides a software-based simulation platform for hearing aid, as an assistive tool, for the hearing impaired and clinician to experience hearing aid function and choose appropriate hearing aid. The platform contains microphone strategy, noise reduction, and wide dynamic range compression (WDRC). In this study, microphone processing strategies from four different hearing aid companies were simulated based on the patent literature of GN ReSound (Canta), Sonic Inovation (Natura), Siemens (Aktiengesellschaft), and Oticon (Syncro) to allow users to experience different hearing aid company''s strategies. Through subjective quality evaluation (waveform, spectrogram, listening) as well as objective quality evaluation (average SNR, log-spectral distance) to assess the microphone strategy, noise reduction strategy combining with microphone strategy of noise elimination performance. For comparison purpose, another commonly used microphones strategy, known as Griffiths-Jim Beamformer Algorithm, was also simulated. In the subjective evaluation, we found that the speech waveform and formant frequencies of the speech spectrogram become clear, and the the voice quality by listening to the sound was better. In addition, through the objective assessment, we found that microphone processing strategies from four hearing-aid companies have effectively enhanced the microphone signal to noise ratio of 4 to 6 dB and the Griffiths-Jim Beamformer strategy improved microphone signal 3 to 4 dB. Furthere improvements of SNRs were shown after we combined four microphone processing strategies and the Griffiths-Jim Beamformer microphone strategy with respective noise reduction strategies from different companies, and the WDRC.
Barthel, R., Bauml, R., and Fischer, E. (2007). "Differential directional microphone system and hearing aid device with such a differential directional microphone system," in United States Patent 20080212814 (Siemens Aktiengesellschaft).
Bell, A. J., and Sejnowski, T. J. (1995 ). "An information-maximization approach to blind separation and blind deconvolution," Neural Computation 7, 1129-1159.
Cohen, I. (2004). "Multichannel post-filtering in nonstationary noise environments," IEEE Transactions on Signal Processing 52, 1149-1160.
Frost, O. L., III (1972). "An algorithm for linearly constrained adaptive array processing," Proceedings of the IEEE 60, 926-935.
Griffiths, L., and Jim, C. (1982). "An alternative approach to linearly constrained adaptive beamforming," IEEE Transactions on Antennas and Propagation 30, 27-34.
Groen, J. J. (1969). "Social hearing handicap : its measurement by speech audiometry in noise," International Journal of Audiology 8, 182-183.
Hamacher, V., Chalupper, J., Eggers, J., Fischer, E., Kornagel, U., Puder, H., and Rass, U. (2005). "Signal processing in high-end hearing aids: state of the Art, challenges, and future trends," EURASIP Journal on Applied Signal Processing 2005, 2915-2929.
Hansen, W., and Woodyard, J. R. (1938). "A new principle in directional antenna design," Proceedings of the Institute of Radio Engineers, 26:333–345.
Haykin, S. (2002). Adaptive Filter Theory (Prentice-Hall, Inc.).
Johnson , D., and Dudgeon, D. (1993). Array Signal Processing: Concepts and Techniques (New Jersey ).
Kochkin, S. (1996). "Customer satisfaction and subjective benefit with high performance hearing aids," Hearing Review, 3(12): 16-26.
L.O.C. (2002). "Emile Berliner," in http://memory.loc.gov/ammem/berlhtml/berlhome.html.
Lee, T.-W. (1998). Independent Component Analysis: Theory and Applications (Kluwer Academic Publishers, Boston).
Luo, F.-L., EDWARDS, B., KATES, J., M., and MICHAEL, N. (2000). "Fixed Polar-Pattern-Based Adaptive Directionality Systems," in United States Patent 09/593,266 (GN RESOUND CORPORTATION ).
NOISE-92 (1993) in http://spib.rice.edu/spib/select_noise.html.
Omologo, M., and Svaizer, P. (1997). "Use of the crosspower-spectrum phase in acoustic event location," IEEE Transactions on Speech and Audio Processing 5, 288-292
Peterson, P., Durlach, N., Rabinowitz, W., and Zurek , P. (1987). "Multimicrophone adaptive beamforming for interference reduction in hearing aids," Journal of Rehabilitation Research & Development 24, 103-110.
Plomp, R. (1978). "Auditory handicap of hearing impairment and the limited benefit of hearing aids," The Journal of the Acoustical Society of America 63, 533-549.
Plomp, R., and Mimpen, A. M. (1979). "Speech-reception threshold for sentences as a function of age and noise level," The Journal of the Acoustical Society of America 66, 1333-1342.
Pritchard, R. L. (1954). "Maximum Directivity Index of a Linear Point Array," The Journal of the Acoustical Society of America 26, 21-27.
Rasmussen, K. B. (2007). "Microphone System With Directional Response," in United States Patent 7,212,642 (Oticon Syncro).
Sandlin, R. E. (2000). Textbook of hearing aid amplification (Singular Publishing Group, San Diego, California ).
Sonic. "Velocity Open BTE," in http://www.sonicinnovations.com/ctrldocs/4001339.A-IntlGenericUG-Velocity4OpenBTEGuide.pdf.
Spriet, A., Van Deun, L., Eftaxiadis, K., Laneau, J., Moonen, M., Van Dijk, B., Van Wieringen, A., and Wouters, J. (2007). "Speech understanding in background noise with the two-microphone adaptive beamformer BEAM in the Nucleus Freedom Cochlear Implant System," Ear and Hearing 28, 62-72.
Vanden Berghe, J., and Wouters, J. (1998). "An adaptive noise canceller for hearing aids using two nearby microphones," The Journal of the Acoustical Society of America 103, 3621-3626.
Wax, M., Shan, T. J., and Kailath, T. (1984). "Spatio-temporal spectral analysis by eigenstructure methods," IEEE Trans. Acoust., Speech, Signal Processing 32, 817-827.
Wim , S., Augustinu, J. B., and Frans , A. B. (1993). "Development of a directional hearing instrument based on array technology," The Journal of the Acoustical Society of America 94, 785-798.
內政部統計處 (2010). "九十九年第七週內政統計通報(98年底列冊身心障礙者人數統計)," in http://www.moi.gov.tw/stat/news_content.aspx?sn=3854.
王小川 (2007). 語音訊號處理 (全華圖書股份有限公司, 台灣, 台北).
王永華 (2006). 認識助聽器 (科林儀器股份有限公司, 台灣, 台北).
王基峰 (2002). "數位助聽器研發平台之建構," 國立臺灣大學電機工程學研究所碩士論文
何克男 (2009). "應用ESIF 陣列技術來改善語音的品質," 國立交通大學機械工程學系碩士論文
汪正剛 (2008). "多聲源方位偵測與聲源數量估算," 國立交通大學電機與控制工程研究所碩士論文.
林柏勛 (2009). "以軟體為基準的助聽器模擬平台之發展-回饋音消除 " 國立中央大學電機工程研究所碩士論文.
孫藍蕙 (2006). "以OMAP5912實現語者方位判定於輪式機器人平台," 國立交通大學電機與控制工程研究所碩士論文.
許詠傑 (2009). "以軟體為基準的助聽器模擬平台之發展-噪音消除," 國立中央大學電機工程研究所碩士論文.
黃銘緯 (2005). "台灣地區噪音下漢語語音聽辨測試," 國立台北護理學院聽語障礙科學研究所碩士論文.
蔡政哲 (2006). "獨立成份分析法於真實環境中聲音訊號分離之探討," 國立中央大學電機工程研究所碩士論文.