跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李俊叡
Chun-Rui Lee
論文名稱: 鼓形透鏡用於單模光纖收發器之設計
The Design of Drum Lens Applied to aSingle-mode Fiber Transceiver.
指導教授: 孫慶成
Ching-Cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 91
語文別: 中文
論文頁數: 78
中文關鍵詞: 單模光纖耦合收發器
外文關鍵詞: Transceiver, Couple, Fiber
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的目的在研究以單一光學元件之高效率的光纖耦合機制,我們設計的光學元件為一鼓形透鏡(Drum Lens),在不考慮Fresnel反射及吸收下模擬之最高耦合效率可達71%。
    在本研究中,可分為三個主要研究內容,分別為:(1)光學系統之初階設計:包括雷射腰寬之計算及鼓形透鏡之初階設計。(2)進階模擬與電腦輔助設計:包括像差研究與消像差之光學設計及應用Zemax光學設計軟體與ASAP光學模擬軟體來設計與模擬光學系統之光學特性並計算耦其合效率。(3)光學元件置放容忍度分析:包括分析各元件(雷射、透鏡與光纖)置放的位移及傾斜容忍度。


    目錄 II 圖索引 III 表索引 IX 第一章 緒論 1 1.1 光纖通訊發展現況、發展趨勢及元件應用 1 1.2 單模光纖發射模組的設計 2 1.3 本論文內容及架構 4 第二章 耦光元件與相關理論介紹 5 2.1 二極體雷射元件 5 2.2 高斯光傳遞理論 13 2.3 光纖模態理論 21 2.4 耦合效率計算 25 第三章 球面鼓形透鏡設計 29 3.1 初階設計 30 3.2 設計結果 37 3.3 像差分析 45 第四章 減少球面像差之設計 49 4.1 簡述球面像差 49 4.2 引入離焦像差 51 4.3 非球面鼓形透鏡之設計 54 第五章 元件置放容忍度分析 57 5.1 各元件位移容忍度分析 58 5.2 各元件傾斜容忍度分析 64 第六章 結論 68 參考文獻 71 中英文名詞對照表 74

    1. K. Shiraishi, and N. Hiraguri “A lensed fiber with cascaded GI-fiber
    configuration for efficient coupling between LDs to single-mode fibers,”
    ECOC’98 20-24, 355-356 (1998).
    2. K. Shiraishi and S. I. Kuroo, “A new lensed-fiber configuration employing
    cascaded GI-fiber chips” J. Lightwave Technol. 18, 787-794s with large
    aspect ratio,” IEEE Transactions on Advanced Packaging 23, 165-169 (2000).
    3. S. K. Mondal, S. Gangopadhyay, and S. Sarkar, “Analysis of an upside-down
    taper lens and from a single-mode step-index fiber,” Appl. Opt. 37, 1006-
    1009 (1998).
    4. S. Y. Huang, C. E. Gaebe, K. A. Miller, G. T. Wiand, and T. S. Stakelon,
    “High coupling optical design for laser diodes with large aspect ratio,”
    IEEE Transactions on Advanced Packaging 23, 165-169 (2000).
    5. H. Yoda, and K. Shiraishi, “A new scheme of a lensed fiber employing a
    wedge-shaped graded-index fiber tip for the coupling between high-power
    laser diodes and single-mode fibers,” J. Lightwave Technol. 19, 1910-1917
    (2001).
    6. Z. Tang, R. Zhang, S. K. Mondal, and F. G. Shi, “Optimization of fiber-
    optic coupling and alignment for coupling between a laser diode and a
    wedged single-mode fiber,” Opt. Commun. 199, 95-101 (2001).
    7. J. Heinrich, E. Zeeb, and K. J. Ebeling, “Butt-coupling efficiency of
    VCSEL’s into multimode fibers,” IEEE Photon. Technol. Lett. 9, 1555-1557
    (1997).
    8. T. Wongcharoen, B. M. A. Rahman, N. Rajarajan, and K. T. V. Grattan, “Spot-
    size cinversion using uniform waveguide sections for efficient laser-fiber
    coupling,” J. Lightwave Technol. 19, 708-716 (2001).
    9. K. Kawano, M. Koftoku, H. Okamoto, Y. Itaya, and M. Naganuma, “Coupling
    and conversion characteristics of spot-size-converter integrated laser
    diodes,” IEEE J. Selected topics in quantum electronics 3, 1351-1360
    (1997).
    10. H. Oohashi, M. Fukuda, Y. Kondo, M. Wada, Y. Tohmori, Y. Sakai, and H.
    Toba, “Reliability of 1300-nm spot-size converter integrated laser diodes
    for low-cost optical modules in access networks,” J. Lightwave Technol.
    16, 1302-1307 (1998).
    11. L. A. Wang, and C. D. Su, “Tolerance analysis of aligning an astigmatic
    laser diode with a single-mode optical fiber,” J. Lightwave Technol. 14,
    2757-2762 (1996).
    12. W. B. Joyce, “Alignment of gaussian beams,” Appl. Opt. 23, 4187-4196
    (1984)
    13. S. M. Sze, Semiconductor Devices Physics and Technology, Wiley (1985).
    14. C. DeCusatis, E. Mass, D. P. Clement, and R. C. Lasky, Handbook of Fiber
    Optic Data Communication (1996).
    15. J. W. Goodman , “ Introduction to Fourier Optics” , McGraw-Hill , p.32
    (1996)
    16. A. Yariv, and P. Yeh, “Optical Waves in Crystals” , Mei Ya, 1984.
    17. K.lawano, M. Kohtoku, H. Okamoto, Y. Itaya, and M. Naganuma, “Coupling
    and Conversion Characteristics of spot-size-converter integrated laser
    diodes,” IEEE Journal of Selected Topics in Quantum Electronics 3, 1351-
    1360 (1997)
    18. J. Shim, J. Kim, D. Jang, Y. Eo, and S. Arai, “Facet reflectivity of a
    spot-size-converter integrated semiconductor optical amplifier,” IEEE J.
    Quant. Electron. 38, 665-673 (2002).
    19. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics, John Wiley
    (1991).
    20. ASAP Techinical Guide, Breault Research Organization, Inc.
    21. J. Arnaud, “Representation of Gaussian beams by complex rays,” Appl.
    Opt. 24, 33-50 (1985).
    22. R. Herlowski, et al. “Gaussian beam ray-equivalent modeling and optical
    design,” Appl. Opt. 22, 1168-1174 (1983).
    23. P. Karioja, and D. Howe, “Diode-laser-to-waveguide butt coupling,” Appl.
    Opt. 35, 404-416 (1996).
    24. H. Karstensen, and K. Drögemüller, “Loss analysis of laser diode to
    single-mode fiber couplers with glass spheres or silicon plano-convex
    lenses,” J. Lightwave Technol. 8, 739-747 (1990).
    25. Virendra N. Mahajan , “Optical imaging and aberrations part 1” , SPIE
    PRESS, (1998)
    26. L. A. Rcith, J. W. Mann, G. R. Lalk, R. R. Krchnavek, N. C. Andreadakis,
    and Chung-en Zah, “Relaxed-tolerance optoelectronic device packaging,” J.
    Lightwave Technol. 9, 477-484 (1991).
    27. T. Takamori, D. Shimura, H. Maeno, K. Koani, M. Uekawa, and H. Sasaki,
    “Silicon microlens on V-groove platform for low-cost optical packaging,”

    QR CODE
    :::