| 研究生: |
簡才貴 Tsai-Kuey Chien |
|---|---|
| 論文名稱: |
土石壩材料之動態性質 Dynamic Property of Earthdam soils |
| 指導教授: |
黃俊鴻
Jin-Huang Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 152 |
| 中文關鍵詞: | 阻尼比 、土石壩 、共振柱試驗 、剪力模數 |
| 外文關鍵詞: | Earth dam, Resonant column test, Damping ratio, Shear modulus |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
土石壩材料之動態性質是受震反應分析最關鍵的土壤參數,然而動力三軸試驗儀不能精確求取小剪應變振幅下之動態性質,因此本研究採用共振柱試驗儀求取土石壩材料之動態性質。試驗土樣取自於湖山水庫借土區共三種土樣,即殼層土壤SM、ML與心層土壤CL,採用單位體積能量法之概念,利用特製夯模製作標準或改良夯實能量下之重模試體,以符合現地滾壓後的土石材料之乾單位重需大於95%的夯實試驗之最大乾單位重。再者,為模擬壩體長期處於水面之下土壤為完全飽和之情況,本研究也提出一改良的飽和方法使試體能在較短的時間達到要求的飽和度。
研究結果顯示,築壩材料之剪力模數隨著夯實能量與有效圍壓增加而增加,以殼層土壤SM之剪力模數最大、ML次之,心層土壤CL最小。三種土樣的 關係曲線之變化趨勢不同於前人及國內土石壩材料建議曲線,殼層土壤SM的 關係曲線之變化趨勢也不同於前人及國內土石壩材料所建議曲線,僅有殼層土壤ML及心層土壤CL的 關係曲線位於Sun and Seed (1988)對凝聚性土壤所建議範圍內,且心層土壤CL與王金山(2004)所建議曲線相似。並整理各土樣的最大剪力模數提出迴歸的經驗公式,以供工程界選擇土壤動態性質參數之依據。
Dynamic properties of saturated compacted soils are very important parameters in analyzing seismic responses of compacted earth dams. Few test results were found in the past literatures. That is because a number of difficulties that will be encountered in saturating the compacted soil specimens. Since the saturation process is too consuming that the complete test results for dynamic properties are difficult to obtain. This paper proposed two vacuum methods for improving the saturation of the compacted soils. One is for compacted SM and ML soils. The other is for compacted CL soils. Test results showed that both methods make the Skempton’s coefficient B of all specimens greater than 0.95. Based on the saturation techniques, complete dynamic properties of all the cohesive and non-cohesive compacted soils were measured by resonant column test (RCT). The measured properties included the maximum shear modulus and normalized modulus and damping ratio curves in the shear strain range of . The empirical equations correlating the maximum shear modulus, void ratio and effective confining pressure were proposed for different compacted soils. It was found the characteristics of normalized modulus and damping ratio curves are also much different from the typical curves of general soils.
1. 中興工程顧問社,「石門水庫整體安全檢查與評估—專題報告三 現地探查及室內實驗」,台灣省石門水庫管理局委託 (1988)。
2. 中興工程顧問社,「烏山頭水庫土壩安全調查研究分析及評估—專題報告二 室內實驗」,經濟部暨嘉南農田水利會委託 (1989)。
3. 中興工程顧問股份有限公司,「白河水庫安全評估—專題報告D 大壩安定分析」,經濟部台灣省水利局委託 (1996)。
4. 中興工程顧問社,「湖山水庫壩區工程施工調查規劃與設計—築壩材料補充試驗工作報告書」,經濟部水利署中區水資源局委託 (2003)。
5. 中興工程顧問股份有限公司網站。
6. 王金山,「共振柱試驗之土壤動力性質」,碩士論文,國立中央大學土木工程研究所,中壢 (2004)。
7. 宋勻文,「台北盆地北投地區基隆河黏土之動態性質」,碩士論文,國立中央大學土木工程研究所,中壢 (1998)。
8. 沈茂松,實用土壤力學實驗,文笙書局,臺北 (1998)。
9. 施國欽,大地工程學(二),文笙書局,臺北 (2004)。
10. 陳榮嵩,「土石壩壩心材料之動態性質研究」,碩士論文,國立中興大學土木工程研究所,台中 (1990)。
11. 國立交通大學防災工程研究中心,「寶山第二水庫工程計畫—壩體動態分析及試驗成果報告」,經濟部水利處中區水資局委託 (2000)。
12. 楊樹榮,「路基土壤之不飽和吸力特性及反覆載重下之力學行為」,博士論文,國立中央大學土木研究所,中壢 (2005)。
13. 經濟部水利署中區水資源局網站。
14. Hardin, B.O. and Richart, F.E. Jr., “Elastic wave velocities in granular soils,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. SM1, pp. 33〜65 (1963).
15. Hardin, B.O., and Black, W.L., “Vibration modulus of normally consolidated clay,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM2, pp. 353-369 (1968).
16. Hardin, B.O., and Drnevich, V. P., “Shear modulus and damping in soils: measurement and parameter effects,” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM6, pp. 603-624 (1972a).
17. Inci, G., Yesiller, N., and Kagawa, T., “Experimental investigation of dynamic response of compacted clayey soils,” Geotechnical Testing Journal, Vol. 26, No.2, pp. 125-141 (2003).
18. Kokusho, T., “Cyclic triaxial test of dynamic soil properties for wide strain range,” Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, Vol. 20, No. 2, pp. 45-60 (1980).
19. Kim, D.S., and Stokoe II, K.H., “Characterization of resilient modulus of compacted subgrade soils using resonant column and torsional shear tests,”In Transportation Research Record 1369, TRB, National Research Council, Washington, D.C., 1992, pp. 83-91.
20. Seed, H.B., and Idriss, I.M., “Shear moduli and damping factor for dynamic response analysis,” Report No. EERC 70-10, Earthquake Engineering Research Center, Univ. of California, Berkeley, California (1970).
21. Silver, M.L., and Seed, H.B., “Deformation characteritistics of sands under cyclic loading,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, pp. 1081〜1098 (1971).
22. Sun, J.I., Golesorkhi, R., and Seed, H.B., “Dynamic moduli and damping ratios for cohesive soils,” Report No. EERC 88-15, Earthquake Engineering Research Center, Univ. of California, Berkeley, California (1988).
23. Santucci de Magistris, F., Silverstri, F., and Vinale, F., “The influence of compacted on the mechanical behaviour of a silty sand,” Soils and foundation, Vol. 38, No. 4, pp. 41-56 (1998).
24. Santucci de Magistris, F., and Tatsuoka, F., “Effects of moulding water content on the stress-strain behaviour of a compacted silty sand,” Soils and foundation, Vol. 44, No. 2, pp. 85-101 (2004).
25. Tatsuoka, F., Iwasaki, T., and Takagi, Y., “Hysteretic damping of sands under cyclic loading and its relation to shear modulus,” Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, Vol. 18, No. 2, pp. 25-40 (1978).
26. Vucetic, M., and Dobry, R., “Effect of soil plasticity on cyclic response,” Journal of Geotechnical Engineering, ASCE, Vol. 117, No. 1, pp. 89-107 (1991).