跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蘇俊宇
Chun-Yu Su
論文名稱: 地表過程質傳與熱傳數值模擬
指導教授: 李明旭
Ming-Hsu Li
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 水文與海洋科學研究所
Graduate Instittue of Hydrological and Oceanic Sciences
畢業學年度: 94
語文別: 中文
論文頁數: 92
中文關鍵詞: 土壤溫度土壤含水量
外文關鍵詞: soil temperature, soil water content
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用垂直整合之水文氣象站即時觀測系統觀測大氣溫度、風速風向、大氣壓力、相對濕度、降雨量、皿蒸發量、淨輻射量、太陽輻射量、土壤溫度與土壤含水量等,加上現地土樣之土壤特性分析結果與垂直一維之SHAW模式模擬,來討論地表過程之質傳與熱傳特性。主要研究方法是利用水文氣象站之微氣象觀測資料,將觀測所得之每小時氣象條件(大氣溫度、相對濕度、風速、降雨量及太陽輻射量)及初始條件(模擬初始之土壤溫度與土壤含水量),透過模式模擬土壤溫度與土壤含水量隨時間變化趨勢,並與儀器觀測之土壤含水量與溫度隨時間變化趨勢比較,對現場之土壤特性參數進行檢定及驗證,討論模式模擬結果。
    模式模擬結果發現,SHAW模式對於降雨時期之表層土壤含水量變化模擬結果較好,即在接近飽和時之模擬結果較佳;模式對於表層土壤退水時期之土壤含水量變化趨勢模擬結果較差,即模式有高估的現象。由於模式僅考慮土壤特性及垂直方向上之質傳與熱傳過程,無法反應礫石土層及側向水流對土壤含水量變化趨勢之影響,故對於粗顆粒含量較高之土壤含水量模擬會有較大誤差。
    以長期土壤溫度模擬結果來看,SHAW模式能有效模擬出土壤溫度長期變化趨勢,但以短期日間之模擬結果來看,對於每日中午地表溫度有高估的現象。


    This study used a vertically integrated hydrological and meteorological real-time monitoring system to observe the air-temperature, wind speed and direction, air-pressure, relative humidity, precipitation, pan-evaporation, net radiation, solar radiation, soil temperature and soil moisture at the NCU meteorological site. We used those meteorological data and in situ soil characteristics to run the SHAW model and discussed the results of mass and thermal fluxes of land processes at this site.
    With the given initial conditions (soil temperature and water content) and the hourly weather conditions (air-temperature, wind speed, relative humidity), the SHAW model can simulate diurnal variations of soil moisture and temperature. During rainfall periods, the saturation of soil moisture can be simulated by the model as a result of infiltration. For the recession period of soil moisture, after rainfalls cease, the discrepancies between simulated and observed soil moistures are getting larger along with the increase of simulation time.
    The long-term trend of most soil temperature can be fairly described by the model, but the simulated surface temperature is higher than observed data at midday.

    摘要 I ABSTRACT II 目錄 III 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 1.3 本文架構 2 第二章 文獻回顧 4 2.1 蒸發散與可感熱 4 2.2 土壤水分與溫度 6 2.3 地表過程模式 7 第三章 陸氣界面之質傳與熱傳觀測 9 3.1 觀測地點 9 3.1.1 土壤特性分析 9 3.2 地表微氣象儀器觀測 11 3.3 土壤水分與能量觀測 12 3.3.1 Capacitance Probe (CP) 14 3.3.2 淨輻射 18 3.3.3 土壤熱通量 19 3.3.4 可感熱(Sensible Heat) 19 3.3.5 潛熱(Latent Heat) 20 第四章 SHAW模式 22 4.1 地表能量 22 4.1.1 淨輻射 23 4.1.2 植被層內的太陽輻射 23 4.1.3 落葉層內的太陽輻射 25 4.1.4 地表太陽輻射 25 4.1.5 長波幅射 25 4.1.6 可感熱與潛熱通量 26 4.1.7 土壤熱通量 28 4.2 系統內的能量通量 28 4.2.1 穿過植被層的熱通量 28 4.2.2 植被層內的傳輸 29 4.2.3 植被層內葉面的熱傳輸 30 4.2.4 落葉層內的熱傳輸過程 31 4.2.5 熱容 31 4.2.6 熱對流與熱傳導 31 4.2.7 蒸發潛熱 32 4.2.8 土壤內的熱傳遞過程 32 4.2.9 比熱 33 4.2.10 融化的潛熱 33 4.2.11 熱傳導 34 4.2.12 蒸發潛熱 34 4.3 系統內的水通量 35 4.3.1 穿過植被層的水通量 35 4.3.2 植被層內的水汽傳輸 35 4.3.3 植被植物的水汽傳輸 35 4.3.4 穿過落葉層的水通量 37 4.3.5 落葉層內的蒸發 38 4.3.6 穿過土壤的水通量 38 4.3.7 液態水通量 39 4.3.8 水汽通量 39 4.4 下邊界條件 40 4.5 降雨與滲透 41 4.5.1 植被層與落葉層截流 41 4.5.2 土壤滲透 42 4.5.3 能量之計算 43 第五章 模式參數檢定與驗證 45 5.1 模式輸入條件及設定 45 5.1.1 微氣象資料與場地特性 45 5.1.2 作物特性 46 5.1.3 土壤特性 46 5.1.4 初始條件與邊界條件 47 5.2 參數檢定 49 5.2.1 土壤含水量模擬結果 50 5.2.2 土壤溫度模擬結果 54 5.2.3 蒸發散模擬結果 58 5.3 參數驗證 59 5.3.1 結果討論 66 第六章 結論與建議 68 6.1 結論 68 6.2 建議 69 參考文獻 71 附錄A 土壤各分層之土壤特性參數檢定結果 77

    1. 李文生,1999,未飽和層土壤水力傳導與熱傳導裸土蒸發模式之研究,國立台灣大學碩士論文。
    2. 何美滿,2001,植被與土壤系統蒸發散量模擬之研究,國立台灣大學碩士論文。
    3. 陳主惠,2002,作物可感熱與潛熱傳輸現象之多層地表過程模式之探討。
    4. 吳富春、沈易徵,2002,水田生態環境及微氣候模式,行政院農委會委託研究計畫。
    5. 邱奕霖,2005,地表過程蒸發散之觀測與分析,國立中央大學碩士論文。
    6. Bloomsbburg, G. L. and S.J. Wang. 1969, Effect of moisture contenton permeability of frozen soils. Paper presented at 16th annual meeting of Pacific Northwest Region, American Geophysical Union.11 pp.
    7. Bristow, K. L., G. S. Campbell, R. I. Papendick and L. F. Elliott. 1986, Simulation of heat and moisture transfer through a surface residue-soil system, Agric. And Forest Met., 36: 193-214.
    8. Brooks, R. H. and A. T. Corey. 1966, Properties of porous media affecting fluid flow. J. Irrig. and Drain Div., ASCE. 92(IR2): 61-88.
    9. Brutsaert, W., 1982, Evaporation into the Atmosphere: Theory, History, and Applications, Kluwer Academic Publishers, Netherlands, 229 pp.
    10. Brutsaert, W., and M. B. Parlange, 1998, Hydrologic cycle explains the evaporation paradox, Nature, 396, 30.
    11. Campbell, G. S. 1977, A Introduction to Environmental Biophysics. Springer-Verlag, New York, New York, 159 pp.
    12. Campbell, G. S. 1985, Soil Physics with BASIC: Transport models for soil-plant systems. Elsevier, Amsterdam, 150 pp.
    13. Cary, J. W. and H. F. Mayland. 1972, Salt and water movement in unsaturated frozen soil. Soil Sci. Soc. Amer. Proc. 36: 549-555.
    14. Choudhury, B. J., and J. L. Monteith, 1988, A four-layer model for the heat budget of homogeneous land surfaces, Quarterly Journal of the Royal Meteorological Society, Vol. 114, 373-398.
    15. Denmead, O. T. and E. F. Bradley. 1985, Flux-gradient relationships in a forest canopy. Pp. 412-442 In: B. A. Hutchison and B.B Hicks, The Forest-Atmosphere Interaction. D. Reidel Publishing Co., Hingham, Massachusettes.
    16. De Vries, D. A. 1963, Thermal properties of soil. Chapter 7 In: W. R. Van Wijk (ed.), Physics of Plant Environment. North-Holland Publising Co., Amsterdam.
    17. Dingman, S. L., 2002, Physical Hydrology, 2nd Ed., Prentice Hall, New Jersey, USA, 646 pp.
    18. Dolman, A. J. 1993, A multiple source land surface energy balance model for use in GCMs’. Agric. and Forest Meteor., 65: 21-45.
    19. Dolman, A. J. and J.S. Wallace. 1991, Langrangian and K-theory approaches in modelling evaporation and sparse canopies. Q. J. R. meteorol. Soc. 117: 1325-1340.
    20. Fares, A., and A. K. Alva, 1999, Estimation of citrus evapotranspiration by soil water mass balance, Soil Science, Vol. 164, No. 5, 302-310.
    21. Fares, A., and A. K. Alva, 2000, Soil water components based on capacitance probes in a sandy soil, Soil Science Society of America Journal, Vol. 64, 311-318.
    22. Flerchinger, G. N. and F. B. Pierson. 1991, Modeling plant canopy effects on variability of soil temperature and water. Agric. and Forest Meteor. 56(1991): 227-246.
    23. Flerchinger, G. N., C. L. Hanson and J. R. Wight. 1996b, Modeling evaportanspiration and surface energy budgets across a watershed. Water Resour. Res. 32(8): 2539-2548.
    24. Flerchinger, G. N. and F. B. pierson. 1997, Modeling plant canopy effects on variability of soil temperature and water: Model calibration and validation. J. Arid Environ. 35: 641-653.
    25. Flerchinger, G. N., W. P. Kustas and M. A. Weltz. 1998, Simulating Surface Energy Fluxes and Radiometric Surface Temperatures for Two Arid Vegetation Communities using the SHAW Model. J. Appl. Meteor. 37(5): 449-460.
    26. Fuchs, M. G. S. Campbell and R. I. Papenddick. 1978, An analysis of sensible and latent heat flow in a partially frozen unsaturated soil. Soil Sci. Soc. Amer. J. 42(3): 379-385.
    27. Goudriaan, J. 1988, The bare bones of leaf-angle distribution in radiation models for canopy photosynthesis and energy exchange, Agric. and Forest Meteor., 43: 155-169.
    28. Goudriaan, J. 1989, Simulation of micrometeorology of crops, some methods and their problems, and a few results. Agric. and Forest Meteor., 47, 239-258.
    29. Huntingford, C., S. J. Allen, and R. J. Harding. 1995, An intercomparison of single and dual-source vegetation-atmosphere transfer models applied to transpiration from Sahelian savanna. Boundary-Layer Meteor., 74, 397-418.
    30. Idso, S. B. and R. D. Jackson. 1969, Thermal radiation from the atmosphere. J. of Geoph. Res. 74(23): 5397-5403.
    31. Idso, S. B., J. K. Aase, and R. D. Jackson, 1975, Net radiation-soil heat flux relation as influenced by soil water content variations, Boundary Layer Meteorology, 9, 113-122.
    32. Kimball, B. A. and E. R. Lemon. 1971, Air turbulence effects upon soil gas exchange. Soil Sci. Soc. Amer Proc. 35: 16-21.
    33. Kustas, W. P., C. S. T. Daughtry, and P. J. van Oevelen, 1993, Analytical treatment of the relationships between soil heat flux/net radiation ration and vegetation indices, Remote Sens. Environ, 46, 319-330.
    34. Mihailović, D. T. and M. Ruml. 1996, Design of land-air parameterization scheme (LAPS) for modelling boundary layer surface processes. Meteor. Atmos. Phys., 58: 65-81.
    35. Miller, R. D. 1963, Phase-equilibria and soil freezing. P 193-197 In: International Conference on Permafrost. Lafayette, Ind) ana. National Academy of Science.
    36. Monteith, J. L., 1981, Evaporation and surface temperature, Quarterly Journal of the Royal Meteorological Society, Vol. 107, No. 451, 1-27.
    37. Myrold D. D., L. F. Elliot, R. I. Papendick, and G. S. Campbell. 1981, Water potential-water content characteristics of wheat straw. Soil Sci. Soc. Amer. Proc. 37: 522-527.
    38. Nichols, W. D. 1992, Energy budgets and resistances to energy transport in sparsely vegetated rangeland, Agric. and Forest Meteor., 60: 221-247.
    39. Norman, J. M. 1979, Modeling the complete crop canopy. p. 249-277 In: B. J. Barfield and J. F. Gerber (eds.), Modification of the Aerial Environment of Plants, ASAE Monograph, St. Joseph, MI.
    40. Paltineanu, I. C., and J. L. Starr, 1997, Real-time soil water dynamics using multisensor capacitance probes: laboratory calibration, Soil Science Society of America Journal, Vol. 61,1576-1585.
    41. Penman, H. L., 1948, Natural Evaporation from open water, bare soil and grass, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 193, No. 1032, 120-145.
    42. Priestley, C. H., and R. J. Taylor, 1972, On the assessment of surface heat flux and evaporation using large-scale parameters, Monthly Weather Review, Vol. 100, No. 2, 81-92.
    43. Raupach, M. R. 1989, A practical Langrangian method for relating scalar concentrations to source distributions in vegetation canopies. Q. J. R. Meteorol. Soc., 115: 609-632.
    44. S. Lawrence Dingman, 2002, Physical Hydrology (2nd edition), University of New Hampshire.
    45. Santanello, J. A., and M. A. Friedl, 2003, Diurnal covariation in soil heat flux and net radiation, Journal of Applied Meteorology, Vol.42, 851-862.
    46. Starr, J. L., and I. C. Paltineanu, 1998, Soil water dynamics using multisensor capacitance probes in nontraffic interrows of corn, Soil Science Society of America Journal, Vol. 62, 144-122.
    47. van de Griend, A. A. and J. H. van Boxel. 1989, Water and surface energy balance model with a multilayer canopy representation for remote sensing purposes. Water Resour. Res., 25: 949-971.
    48. Yamanaka, T. and T. Yonetani. 1999, Dynamics of the evaporation zone in dry sandy soils. Journal of Hydrology, Vol. 217, 135-148.

    QR CODE
    :::