跳到主要內容

簡易檢索 / 詳目顯示

研究生: 連崇閔
Chung-min Lien
論文名稱: 利用電子迴旋共振化學氣相沉積法成長摻雜硼與磷微晶矽之研究
The Study for boron and phosphorus doped microcrystalline silicon using electron cyclotron resonance chemical vapor deposition
指導教授: 張正陽
Jenq-Yang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 99
語文別: 中文
論文頁數: 81
中文關鍵詞: 電子迴旋共振化學氣相沉積硼摻雜磷摻雜
外文關鍵詞: Phosphorus doped, Boron doped, ECR-CVD
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  本篇論文是利用電子迴旋共振化學氣相沉積法electron cyclotron resonance-chemical vapor deposition (ECR-CVD)來成長矽薄膜太陽能電池,主要在探討p、n摻雜層在不同條件下所成長出的薄膜特性與不同條件的p摻雜層對於太陽能電池的影響。
     ECR-CVD是利用微波激發使腔體內部的氣體解離,屬於高密度電漿化學沉積,優點除了高密度電漿外,還有較低的離子溫度、較快的鍍率、較低的離子轟擊、較低的工作壓力等。藉由利用不同的氫氣稀釋濃度、工作壓力、摻雜氣體濃度、微波功率或氬氣混合濃度,可以達到不同特性的p、n薄膜。
     利用ECR-CVD能夠成長高摻雜的硼與磷摻雜微晶矽,雜質摻雜濃度能控制在19到20次方以上,厚度在100nm上下時能控制結晶率到35%,而載子移動率也能利用較低的摻雜氣體流量來改善,能將載子移動率從0.1 (cm2/ V-s)提升至 1.2(cm2/ V-s)。
     利用沉積摻雜濃度為2.3E19、載子移動率為1.25 (cm2/ V-s)之p層與摻雜濃度為6.71E19、載子移動率為0.884(cm2/ V-s)之n型來成長非晶矽薄膜太陽能電池可達到1.4%效率、4( mA)電流密度、0.8(V)與42%填充因子。


     This paper is focused on growing p and n-doped thin-film silicon solar cells by electron cyclotron resonance chemical vapor deposition electron cyclotron resonance-chemical vapor deposition (ECR-CVD). The characteristics of doped layers and growing conditions are discussed in this study.
     The ECR-CVD is use of microwave excited gas dissociation to produce high-density plasma. The advantage of ECR-CVD are high plasma density, low ion temperature, the faster deposition rate, low ion bombardment, low operating pressure. By using different hydrogen dilution ratio, working pressure, dopant gas concentration, microwave power or concentration of argon gas mixture can grow different characteristics p, n film.
     Using ECR-CVD to grow highly boron and phosphorus doped microcrystalline silicon can able to control the concentration 19 to 20 order,The crystallization rate can be controlled to 35% when the thickness of thin film silicon is limited to 100nm, while the mobility can be improved by doping with lower gas flow.The mobility can from 0.1 (cm2 / Vs) raised to 1.2 (cm2 / Vs).
    Growth of amorphous silicon solar cells can be used as the doping concentration 2.3E19, carrier mobility was 1.25 (cm2 / Vs) of the p layer and the doping concentration of 6.71E19, carrier mobility was 0.884 (cm2 / Vs) of the n layer. The efficiency can reach 1.4%, 4 (mA) current density, 0.8 (V) and 42% fill factor.

    論文電子檔授權書 Ⅰ 論文指導教授推薦書 Ⅱ 論文口試委員審定書 Ⅲ 中文摘要 IV Abstract V 誌謝 VI 目錄 VIII 圖目錄 XI 表目錄 XIV 第一章 簡介 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 論文架構 4 第二章 基本理論 5 2.1 太陽能電池理論 5 2.2電子迴旋共振化學氣象沉積製 7 2.2.1 電漿理論 7 2.2.2 電子迴旋共振化學像沉積原理 9 2.3矽薄膜摻雜之理論 12 第三章 研究方法 15 3.1 製程設備 15 3.2 薄膜製作 18 3.2.1 試片清洗 18 3.2.2 薄膜成長 18 3.3 薄膜量測 19 3.3.1 拉曼光譜量測 19 3.3.2 UV/VIS/IR穿透光譜儀 21 3.3.3 霍爾量測系統 25 第四章 實驗結果 29 4.1 成長參數對於薄膜特性之影響 29 4.1.1 微波能量對成膜的影響 29 4.1.2 製程壓力對成膜的影響 33 4.1.3 氬氣流量對薄膜的影響 37 4.1.4 氫氣稀釋比例對薄膜的影響 41 4.1.5 摻雜氣體比對薄膜的影響 45 4.2.1 ECR-CVD成長之硼摻雜微晶矽薄膜特性 49 4.2.ECR-CVD成長之磷摻雜微晶矽薄膜特性 51 4.3 成長在透明導電膜上之p層特性 54 4.3.2 摻雜濃度比影響透明導電膜與實驗用玻璃結晶特性 56 4.4 成長非晶矽薄膜太陽能電池 59 第五章 結論 63 參考文獻 64

    [1] L. Raniero, N. Martins,P. Canhola, S. Zhang, S. Pereira, I. Ferreira, E. Fortunato, and R. Martins, "Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p-i-n solar cell," Solar Energy Mater. Solar Cells 87, 349-355 (2005).
    [2] Doald A. Neamen, "Semiconductor Physics and Devices",3rd edition, McGraw-Hill, Upper Saddle River, NJ (2001)
    [3] J. Schwan, S. Ulrich V. Batori, H. Ehrhardt and S.R.P. Sliva, J. Appl. Phys.,80(1996) 440
    [4] Maurice H. Francombe, Phsics of Thin Films, 18(1994)
    [5] Koel Adhikary, Swati Ray, "Characteristics of p-type nanocrystalline silicon thin films developed for window layer of solar cells," Journal of Non-Crystalline Solids 353, 2289–2294 (2007).
    [6] Takashi Noma, Kwang Soo Seol, Makoto Fujimaki, Yoshimichi Ohki, J. Appl. Phys. 90, 5(2001)
    [7] Tauc, J., in: Optical properties of Solids, ed. by F. Abeles (North-Holland, Amsterdam, 1972) P.277 (1972)
    [8] S. M. SZE, "Semiconductor Devices Physics and technology", pp. 55~56, 2001.
    [9] Donald A. Neamen, "Semiconductor Physics and Devices", pp. 177~180, 2003.
    [10] Matsuda, A., Growth mechanism of microcrystalline silicon obtained from reactive plasmas. Thin Solid Films, 1999. 337(1-2): p. 1-6.
    [11] Rath, J.K. and R.E.I. Schropp, Incorporation of p-type microcrystalline silicon films in amorphous silicon based solar cells in a superstrate structure. Solar Energy Materials and Solar Cells, 1998. 53(1-2): p. 189-203.
    .
    [12] L.M. Portera, A. Teicher, D.L. Meier, "Phosphours-doped, silver-based pastes for self-doping ohmic contacts for crystalline silicon solar cells", Solar Energy Materials & Solar Cells 73 (2002) 209-219

    QR CODE
    :::