| 研究生: |
陳英和 Ying-Ho Chen |
|---|---|
| 論文名稱: |
可見光催化氨基酸與萘酚進行 C(sp3)-C(sp2) 耦合與三牙基含氮雙烯鈀金屬錯合物在鈴木反應中之研究 C(sp3)-C(sp2) Coupling Between Amino Acids and Naphthols by Photoredox Catalysis and Pincer Carbodicarbene Palladium Complex in Suzuki Cross Coupling |
| 指導教授: |
王朝諺
Tiow-Gan Ong |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 可見光 、催化 、鈀金屬 、同碳雙碳烯 、耦合 |
| 外文關鍵詞: | visible light, catalysis, palladium, carbodicarbene, coupling |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
近年來,可見光氧化還原催化劑已被廣泛的應用在有機反應。相較於 傳統的加熱反應,光催化可在較為溫和條件進行反應,並且可使用無害 的可見光作為能量來源。在本研究中,成功利用可見光催化胺基酸與萘 酚進行碳 (sp3)-碳(sp2) 的去羧酸耦合。相較於文獻的結果,此論文所發展 的光催化反應可在較溫和的條件下進行,並且對於氨基酸與萘酚的官能 基有更大的耐受性。
另外,實驗室先前所合成的的同碳雙碳烯鈀金屬錯合物具有光學性質, 意外的也具有光催化反應的效果。在本篇論文中我們探討此錯合物在鈴 木反應上的反應性,成功證明其不僅可以進行可見光催化也可以進行有 機金屬催化。
ABSTRACT
Photoredox catalyst has been widely developed to use visible light sources in the organic synthesis recently. A synthetic paradigm using photoredox catalyst has offered many advantages compared to conventional synthetic method based on heating process. For example, the reactions can proceed under mild conditions at ambient temperature. In this thesis work, we have developed a catalytic photoredox reaction for C(sp3)-C(sp2) coupling of naphthols with amino acid through decarboxylative reaction. The coupling reaction was successfully applied to a range of substrates of tertiary amino acids and naphthols under mild condition.
In second part of thesis, we discovered that the pincer carbodicarbene palladium complex has optical properties and acts as photoredox catalyst. We studied the reactivity of pincer carbodicarbene palladium complex in Suzuki- Miyaura cross-coupling reactions. We successfully proved that this catalyst not only served as photocatalyst but also be cross coupling catalyst.
參考文獻
1. N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075.
2. J. J. Douglas, M. J. Sevrin, C. R. J. Stephenson, Org. Process Res. Dev.
2016, 20, 1134.
3. E. Meggers, Chem. Commun. 2015, 51, 3290.
4. MERCK PHOTOCATALYSIS CHART
5. C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322.
6. A.J.J.Straathof,Chem.Rev.2014,114,1871.
7. P. Gallezot, Chem. Soc. Rev. 2012, 41, 1538.
8. P. Hu, J. Kan, W. Su, M. Hong, Org. Lett. 2009, 11, 2341.
9. A. Maehara, H. Tsurugi, T. Satoh, M. Miura, Org. Lett. 2008, 10, 1159.
10. P. Forgione, M. C. Brochu, M. Stonge, K. H. Thesen, M. D. Bailey, F. Bilodeau, J. Am. Chem. Soc. 2006, 128, 11350.
11. A. G. Myers, D. Tanaka, M. R. Mannion, J. Am. Chem. Soc. 2002, 124, 11250.
12. L. J. Gooβen, N. Rodríguez, B. Melzer, C. Linder, G. Deng, L. M. Levy, J. Am. Chem. Soc. 2007, 129, 4824.
13. L. J. Gooβen, G. Deng, L. M. Levy, Science 2006, 313, 662.
14. L. J. Goonβen, N. Rodríguez, P. P. Lange, C. Linder, Angew. Chem.
Int. Ed. 2010, 49, 1111-1114; Angew. Chem. 2010, 122, 1129.
15. A. Voutchkova, A. Coplin, N. E. Leadbeater, R. H. Crabtree, Chem.
Commun. 2008, 6312.
16. C. Wang, I. Piel, F. Glorius, J. Am. Chem. Soc. 2009, 131, 4194.
64
17. D. H. R. Barton, D. Crich, G. Kretzschmar, Tetrahedron Lett. 1984, 25, 1055.
18. Jin, Y.; Fu, H. Asian J. Org. Chem. 2017, 6, 368.
19. L. Chu, C. Ohta, Z. Zuo, D. W. C. MacMillan, J. Am. Chem. Soc. 2014,
136, 10886.
20. S. Ventre, F. R. Petronijevic, D. W. C. MacMillan, J. Am. Chem. Soc.
2015, 137, 5654.
21. G. A. Cordell, M. L. Quinn-Beattie, N. R. Farnsworth, Phytother. Res.
2001, 15, 183.
22. W. Gul, M. T. Hamann, Life Sci. 2005, 78, 442.
23. H.-P. Bi, W.-W. Chen, Y.-M. Liang, C.-J. Li, Org. Lett. 2009, 11, 3246.
24. C. Zhang, D. J. Seidel, J. Am. Chem. Soc. 2010, 132, 1798.
25. M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510,
485.
26. R. H. Crabtree, J. Organomet. Chem. 2005, 690, 5451.
27. R. W. Saalfrank, H. Maid, Chem. Commun. 2005, 5953.
28. R. W. Saalfrank, C. J. Lurz, Houben Weyl, Vol. E15 (Eds.: Kropf, H.;
Schaumann, E.); Thieme: Stuttgart, 1993, 2959.
29. R. Tonner, F. Oxler, B. Neumuller, W. Petz, G. Frenking, Angew.
Chem., Int. Ed. 2006, 45, 8038.
30. R. Tonner, G. Frenking, Angew. Chem., Int. Ed. 2007, 46, 8695.
31. C. A. Dyker, V. Lavallo, B. Donnadieu, G. Bertrand, Angew. Chem., Int. Ed. 2008, 47, 3206.
32. N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett. 1979, 3437. 33. N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
65
34. M. H. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81, 6898.
35. A. Noble, D. W. C. MacMillan, J. Am. Chem. Soc. 2014, 136, 11602. 36. S. Ventre, F. R. Petronijevic, D. W. C. MacMillan, J. Am. Chem. Soc.
2015, 137, 5654.
37. S. J. McCarver, J. X. Qiao, J. Carpenter, R. M. Borzilleri, M. A. Poss, M. D. Eastgate, M. M. Miller, D. W. C. MacMillan, Angew. Chem. 2016, 56, 728.
38. W. C. Chen, J. S. Shen, T. Jurca, C. J. Peng, Y. H. Lin, Y. P. Wang, W. C. Shih, G. P. Yap, T. G. Ong, Angew. Chem. Int. Ed. 2015, 54, 15207.
39. W.-C.Chen, C.-Y.Lee, B.-C.Lin, Y.-C.Hsu, J.-S.Shen, C.-P. Hsu, G. P. A. Yap, T.-G. Ong, J. Am. Chem. Soc. 2014, 136, 914.
40.W.-C. Chen, Y.-C. Hsu, C.-Y. Lee, G. P. A. Yap, T.-G. Ong, Organometallics 2013, 32, 2435.
41. Unpublished yet
42. A. W. Lochead, G. Proctor, M. P. L. Caton, J. Chem. Soc., Perkin
Trans. 1, 1984, 11, 2477.
43. B. T. O'Neill, V. D. Parikh, W. M. Welch, US 20050256164 (2005).
44. A. L. Zakharenko, T. M. Khomenko, S. V. Zhukova, O. A. Koval, O. D. Zakharova, R. O. Anarbaev, N. A. Lebedeva, D. V. Korchagina, N. I. Komarova, V. G. Vasiliev, J. Reynisson, K. P. Volcho, N. F.
Salakhutdinov, O. I. Lavrik, Bioorg. Med. Chem. 2015, 23, 2044. 45.R. Musiol, J. Jampilek, V. Buchta, L. Silva, H. Niedbala, B. Podeszwa, A. Palka, K. Majerz-Maniecka, B. Oleksyn, J. Polanski, Bioorg. Med.
Chem. 2006, 14, 3592.
66
46. P. Palit, P. Paira, A. Hazra, S. Banerjee, A. Das Gupta, S. G. Dastidar, N. B. Mondal, Eur. J. Med. Chem. 2009, 44, 845.
47. S. H. Chan, C. H. Chui, S. W. Chan, S. H. L. Kok, D. Chan, M. Y. T. Tsoi, P. H. M. Leung, A. K. Y. Lam, A. S. C. Chan, K. H. Lam, J. C. O. Tang, ACS Med. Chem. Lett. 2013, 4, 170.
48. Z. J. Garlets, J. D. Nguyen, C. R. J. Stephenson, Isr. J. Chem. 2014, 54, 351.
49. M. Masui, H. Sayo, Journal of the Chemical Society B: Physical Organic 1971, 1593.
50. T. Nath Das, P. Neta, J. Phys. Chem. A 1998, 102, 7081.
51. Y.-C. Hsu, J.-S. Shen, B.-C. Lin, W.-C. Chen, Y.-T. Chan, W.-M. Ching, G. P. A. Yap, C.-P. Hsu, T.-G. Ong, Angew. Chem. Int. Ed. 2015, 54, 2420.
52. C. Peebles, P. M. Alvey, V. Lynch, B. L. Iverson, Cryst. Growth Des. 2014, 14, 290.
53. H.-P. Bi, W.-W. Chen, Y.-M. Liang, C.-J. Li, Org. Lett. 2009, 11, 3246. 54. C. Zhang, D. Seidel, J. Am. Chem. Soc. 2010, 132, 1798.
55. D.-R. Hwang, B.-J. Uang, Org. Lett. 2002, 4, 463.
56. Y.-S. Hon, Y.-Y. Chou, I.-C. Wu, Synth. Commun. 2004, 34, 2253.
57. M. L. Deb, S. S. Dey, I. Bento, M. Teresa, T. Barros, C. D. Maycock, Angew. Chem. Int. Ed. 2013, 52, 9791.
58. W. Chen, YK. Kang, R. G. Wilde, D. Seidel, Angew. Chem. Int. Ed. 2014, 53, 5179.
59. W. Han, C. Liu, Z.-L. Jin, Adv. Synth. Catal. 2008, 350, 501.
60. D. Qiu, H. Meng, L. Jin, S. Wang, S. Tang, X. Wang, F. Mo, Y. Zhang, J. Wang, Angew. Chem. 2013, 125, 11795; Angew. Chem. Int. Ed. 2013, 52, 11581.
61. L. Liu, Y. Dong and N. Tang, Green Chem. 2014, 16, 2185.
62. T. Xiao, X. Dong, Y. Tang, L. Zhou, Adv. Synth. Catal. 2012, 354,
3195.
63. T. Amaya, D. Hata, T. Moriuchi, T. Hirao, Chem. Eur. J. 2015, 21, 16427.
64. M. Pena-Lopez, L. A. Sarandeses, J. P. Sestelo, Eur. J. Org. Chem. 2013, 2545.
65. N. Liu, C. Liu and Z. Jin, Green Chem. 2012, 14, 592.
66.Y.-H. Chen, D.-J. Cheng, J. Zhang, Y. Wang, X.-Y. Liu, B. Tan, J. Am.
Chem. Soc. 2015, 137, 15062.