跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳慶年
Ching-Nien Chen
論文名稱: 以體積布拉格光柵達成固態三波長雷射輸出
Development of a solid-state three-wavelength laser with volume Bragg gratings
指導教授: 鍾德元
Te-yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 83
中文關鍵詞: 雙波長雷射多波長雷射體積布拉格光柵三波長雷射
外文關鍵詞: dual-wavelength, multi-wavelength, volume bragg grating, three-wavelength
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,成功作出以 Nd:GdVO4 作為固態雷射系統之增益介質(gain medium)的雙波長雷射。此雷射系統所使用的輸出耦合鏡(output coupler)為受溫度控制的體積布拉格光柵(volume Bragg grating)。產生雙波長輸出的方 式為透過調整體積布拉格光柵的溫度使得輸出之雷射能夠對應到不同的受激輻射截面積(emission cross section),進而改變雷射系統之增益(gain)。以此方法,一共作出三部以 Nd:GdVO4 為增益介質而輸出波長相異的雙波長固態雷射。而最後利用在雷射共振腔內加入額外的 Nd:YAG 以及體積布拉格光柵,成功作出了固態三波長雷射。


    Solid-state dual-wavelength lasers were constructed using a Nd:GdVO4 as the gain medium. The output couplers used in these laser cavities were temperature controlled volume Bragg gratings. The gain of the laser cavities was adjusted by changing the temperatures of the VBGs. Temperature adjustment mainly results in thermal expansion of the VBGs, and shifts the corresponding diffraction spectrums, which will then alter the corresponding emission cross section of the laser outputs. Through this method, three dual-wavelength lasers utilizing different emission peaks of the Nd:GdVO4 were realized. The third wavelength was achieved through an additional Nd:YAG and VBG inside the laser cavity.

    中文摘要 i Abstract ii 致謝 iii Contents iv List of Figures v List of Tables ix Chapter 1 Introduction 1 1-1 Introduction 1 1-2 Motivation 3 Chapter 2 Basic Principles 4 2-1 Volume Bragg Gratings (VBGs) 4 2-2 Dual-wavelength Laser Theory 9 2-3 Spectral Behaviors of the Nd:GdVO4 and Nd:YAG 11 Chapter 3 Preliminary Experiments 13 3-1 Dual Polarization T-Shaped Cavity 13 3-2 PID Temperature Controller 21 Chapter 4 Development of Multi-Wavelength Lasers 23 4-1 Single Gain, Dual VBG (1064 and 1070 VBG) Cavity 23 4-2 Single Gain, Dual VBG (1070 and 1082 VBG) Cavity 39 4-3 Dual Gain, Dual VBG (1052 and 1082 VBG) Cavity 45 4-4 Dual Gain Three-Wavelength Output Cavity 50 Chapter 5 Conclusions 58 5-1 Conclusions 58 5-2 Future Work 59 Appendix I References VIII

    [1] D. Parshall and M. K. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Appl. Opt., vol. 45, no. 3, pp. 451–459, 2006.
    [2] S. Hancock, P. Lewis, M. Foster, M. Disney, and J.-P. P. Muller, “Measuring forests with dual wavelength lidar: A simulation study over topography,” Agric. For. Meteorol., vol. 161, pp. 123–133, Aug. 2012.
    [3] Y. J. Huang, Y. S. Tzeng, C. Y. Tang, S. Y. Chiang, H. C. Liang, and Y. F. Chen,“Efficient high-power terahertz beating in a dual-wavelength synchronously modelocked laser with dual gain media,” Opt Lett, vol. 39, no. 6, pp. 1477–1480, 2014.
    [4] Y.-F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd:YVO 4 laser,” Appl. Phys. B Lasers Opt., vol. 70, no. 4, pp. 475–478, Apr. 2000.
    [5] J. L. He, J. Du, J. Sun, S. Liu, Y. X. Fan, H. T. Wang, L. H. Zhang, and Y. Hang, “High efficiency single- and dual-wavelength Nd : GdVO4 lasers pumped by a fiber-coupled diode,” Appl. Phys. B, vol. 79, no. 3, pp. 301–304, Jun. 2004.
    [6] Y. Y. Lin, S. Y. Chen, A. C. Chiang, R. Y. Tu, Y. C. Huang, Y. F. Chen, and Y. H. Chen, “Single-longitudinal-mode, tunable dual-wavelength, CW Nd:YVO4 laser,” Opt. Express, vol. 14, no. 12, pp. 5329–5334, 2006.
    [7] Z. Wang, H. Liu, J. Wang, Y. Lv, Y. Sang, R. Lan, H. Yu, X. Xu, and Z. Shao, “Passively Q-switched dual wavelength laser output of LD-end-pumped ceramic Nd:YAG laser.,” Opt. Express, vol. 17, no. 14, pp. 12076–12081, 2009.
    [8] B. Wu, P. Jiang, D. Yang, T. Chen, J. Kong, and Y. Shen, “Compact dual-wavelength Nd:GdVO_4 laser working at 1063 and 1065 nm,” Opt. Express, vol. 17, no. 8, p. 6004, Mar. 2009.
    [9] X. Z. Wang, Z. F. Wang, Y. K. Bu, L. J. Chen, G. X. Cai, and Z. P. Cai, “A 1064- and 1074-nm Dual-Wavelength Nd:YAG Laser Using a Fabry-Perot Band-pass Filter as Output Mirror,” IEEE Photonics J., vol. 6, no. 4, pp. 1–6, Aug. 2014.V
    [10] X.-Z. Wang, Z.-F. Wang, Y.-K. Bu, Z. Liu, L.-J. Chen, G.-X. Cai, Z.-P. Cai, and J. M. Dawes, “A 1064 nm, 1085 nm Dual-Wavelength Nd:YVO4 Laser Using Fabry–Perot Filters as Output Couplers,” IEEE Photonics Technol. Lett., vol. 26, no. 19, pp. 1983– 1985, Oct. 2014.
    [11] Y. Lü, L. Zhao, P. Zhai, J. Xia, X. Fu, and S. Li, “Simultaneous three-wavelength continuous wave laser at 946nm, 1319nm and 1064nm in Nd:YAG,” Opt. Commun., vol. 286, no. null, pp. 257–260, Jan. 2013.
    [12] L. Jaffres, A. Labruyère, V. Couderc, J. Carreaud, A. Maître, R. Boulesteix, A. Brenier, G. Boulon, Y. Guyot, Y. Rabinovitch, and C. Sallé, “Gain structuration in dualwavelength Nd:YSAG ceramic lasers.,” Opt. Express, vol. 20, no. 23, pp. 25596–602, Nov. 2012.
    [13] Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dualwavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express, vol. 20, no. 5, p. 5644, Feb. 2012.
    [14] C. Y. Cho, C. C. Chang, and Y. F. Chen, “Efficient dual-wavelength laser at 946 and 1064 nm with compactly combined Nd:YAG and Nd:YVO 4 crystals,” Laser Phys. Lett., vol. 10, no. 4, p. 45805, 2013.
    [15] C. Y. Cho, C. C. Chang, and Y. F. Chen, “Diode-end-pumped solid-state lasers with dual gain media for multi-wavelength emission,” Laser Phys., vol. 25, no. 1, p. 15802, Jan. 2015.
    [16] Y. Lü, P. Zhai, J. Xia, X. Fu, and S. Li, “Simultaneous orthogonal polarized dualwavelength continuous-wave laser operation at 1079.5 nm and 1064.5 nm in Nd:YAlO3 and their sum-frequency mixing,” J. Opt. Soc. Am. B, vol. 29, no. 9, pp. 2352–2356, 2012.
    [17] G. Shayeganrad, Y. C. Huang, and L. Mashhadi, “Tunable single and multiwavelength continuous-wave c-cut Nd:YVO 4 laser,” Appl. Phys. B Lasers Opt., vol. 108, no. 1, pp. 67–72, 2012.
    [18] A. White, I. Elder, and G. Hall, “Single longitudinal mode and dual wavelength CW VBG lasers at 1342nm and 1064nm,” in Proc. SPIE, 2012, vol. 8543, p. 85430A.
    [19] G. Shayeganrad and L. Mashhadi, “Dual-wavelength CW diode-end-pumped a-cut Nd:YVO4 laser at 1064.5 and 1085.5 nm,” Appl. Phys. B, vol. 111, no. 2, pp. 189–194, Apr. 2013.
    [20] T. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett., vol. 31, no. 2, p. 229, Jan. 2006.
    [21] 陳昭介, “Variable reflectivity laser mirror study based on chirped volume Bragg grating,” National Central University, 2009.
    [22] T.-Y. Chung, C.-J. Liao, Y.-H. Lien, S. S. Yang, and J.-T. Shy, “Special Laser Wavelength Generation Using a Volume Bragg Grating as Nd:GdVO 4 Laser Mirror, Jpn. J. Appl. Phys., vol. 49, no. 6, p. 62503, 2010.
    [23] L. Glebov, “Volume Bragg Gratings in PTR Glass – New Optical Elements for Laser Design,” in Advanced Solid-State Photonics, 2008, p. 5–7, MD1.
    [24] L. Glebov, “High brightness laser design based on volume Bragg gratings,” in Proc. SPIE, 2006, vol. 6216, pp. 1–11.
    [25] A. Yariv and P. Yeh, Optical waves in crystals : propagation and control of laser radiation. New York: Wiley, 1983.
    [26] O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron., vol. 15, no. 2, pp. 344–353, 2009.
    [27] T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron., vol. 24, no. 6, pp. 895–912, 1988.
    [28] A. E. Siegman, “Lasers,” Mill Valley, Calif.: University Science Books, 1986, p. 1283.
    [29] Y. Sato and T. Taira, “Comparative study on the spectroscopic properties of Nd:GdVO4 and Nd:YVO4 with hybrid process,” IEEE J. Sel. Top. Quantum Electron., vol. 11, no. 3, pp. 613–620, 2005.
    [30] J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. I. Ueda, A. A. Kaminskii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B, vol. 71, pp. 469–473, 2000.
    [31] F. G. Anderson, P. L. Summers, H. Weidner, P. Hong, and R. E. Peale, “Interpretive crystal-field parameters: Application to Nd3+ in GdVO4 and YVO4,” Phys. Rev. B, vol. 50, no. 20, pp. 14802–14808, Nov. 1994.
    [32] W. Koechner, Solid-State Laser Engineering, 6th ed. Springer-Verlag New York, 2006.
    [33] Y. Sato and T. Taira, “Temperature dependencies of stimulated emission cross section for Nd-doped solid-state laser materials,” Opt. Mater. Express, vol. 2, no. 8, pp. 514– 522, 2012.
    [34] B. Edlén, “The Refractive Index of Air,” Metrologia, vol. 2, no. 2, pp. 71–80, 1966.
    [35] “Technical Data BLUE SHEET Martensitic Stainless SteelsType 410, 420, 425 Mod and 440A,” Allegheny Ludlum Corporation, Pittsburgh, PA, Data sheet, 1998.
    [36] OMEGA Engineering inc., “Introduction to Resistance Temperature Detectors.” [Online]. Available: http://www.omega.com/prodinfo/rtd.html. [Accessed: 15-Jun- 2016].
    [37] OMEGA Engineering inc., “Introduction to Temperature Measurement with thermistors.” [Online]. Available: http://www.omega.com/prodinfo/thermistor.html. [Accessed: 15- Jun-2016].
    [38] B. Beauregard, “Arduino PID Autotune Library.” [Online]. Available: http://brettbeauregard.com/blog/2012/01/arduino-pid-autotune-library/. [Accessed: 15- Jun-2016].
    [39] W. Spinelli, “AutotunerPID Toolkit.” [Online]. Available: http://www.mathworks.com/matlabcentral/fileexchange/4652-autotunerpid-toolkit. [Accessed: 15-Jun-2016].

    QR CODE
    :::