| 研究生: |
董孟軒 Meng-Syuan Doong |
|---|---|
| 論文名稱: |
Sc與Cu含量對A201合金銲接特性之研究 |
| 指導教授: |
李勝隆
Sheng-Long Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | A201合金 、銲接熱裂 、W相 、TIG銲 |
| 外文關鍵詞: | Sc, hot cracking in weld, Zr, W phase, A201 alloy, TIG weld |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於A201合金具有較寬之固液兩相區(123~127℃),容易於鑄件中產生缺陷,故銲接性質差,極易發生銲接熱裂等問題。在Al-Cu合金中添加微量Sc、Zr後,將使晶粒大幅細化而降低銲接熱裂發生,提升合金銲接性;但W(Al5.4-8Cu6.6-4Sc)相之生成,將降低析出強化效果,造成合金強度不足的問題。
本實驗擬於Al-4.6Cu-0.3Mg-0.6Ag合金中添加0.4Sc及0.1Zr,並分別提高Cu(或卅與Mg、Ag)含量而配置成三種銲料合金,爾後分別對母材A201合金施以TIG銲接,並施以T7時效熱處理,探討Sc與Cu含量對A201合金銲接前後之微結構與機械性質之影響。利用光學顯微鏡(OM)、電子微探儀(EPMA)、導電度計(%IACS)、微差掃描熱分析儀(DSC)、穿透式電子顯微鏡(TEM)、掃描式電子顯微鏡(SEM)、硬度試驗、拉伸試驗(Tensile Test)等方法,探討各銲料合金與TIG銲後試片之微結構與機械性質之關係,並與母材A201合金做一比較。
結果顯示,含微量Sc、Zr之Al-Cu-Mg-Ag合金,於凝固時會晶出Al3(Sc,Zr)相及W相,使晶粒大幅細化;而W相之生成會消耗Cu元素,且無法藉由固溶處理回溶至基地內,減少Cu原子固溶量,導致降低合金強度及延性。提高Cu含量後,可提升材料強度,且不改變合金中良好的細晶組織;提高Mg含量,亦可提升材料強度,但大幅降低延性。此外,以含Sc、Zr之Al-Cu-Mg-Ag合金銲料於母材A201合金上實施TIG銲接後之銲件,其銲道組織皆為等軸細小晶粒,且無熱裂發生;銲件之時效強度皆能維持在A201合金母材之80%以上,延性也可維持在母材A201合金之60%以上。
1. R. E. Reed-Hill and R. Abbaschian, “Physical Metallurgy Principles”, 3rd ed., PWS Publishing Company, 1991, pp.697-698
2. J. Raffin, US Patent No. 3475166, Oct. 26, 1969
3. J. R. Davis, “Aluminum and Aluminum alloys”, ASM Specialty Handbook, ASM International, 1994, pp.706-707
4. I. J. Polmear, G. Pons, Y. Barbaux, H. Octor, C. Sanchez, A. J. Morton, W. E. Borbidge and S. Rogers, “After Concorde:Evaluation of creep resistant Al-Cu-Mg-Ag Alloys”, Materials Science and Technology, 1999, Vol.15, pp.861-868
5. 鄭嘉仁, “Mn含量對A201鋁合金晶粒成長之影響”, 國立中央大學機械工程研究所碩士論文, 1993
6. A. Kearney, “Alloy History”, Trialco Aluminum Data Sheet, 1983, Table. 1, Chicago Height, IL
7. J. R. Davis, “Aluminum and Aluminum alloys”, ASM Specialty Handbook, ASM International, 1994, pp.25
8. N. J. Davidson, “Review of the Mechanical Properties, Reliability and Usage of Ultra High Strength Aluminum and Application”, AFS, 1988, pp.232-247
9. B. C. Muddle and I. J. Polmear, “The Precipitate Ω Phase in Al-Cu-Mg-Ag Alloys”, Acta Metall., 1989, Vol.37, pp.777-789
10. R. J. Chester and I. J. Polmear, “TEM Investigation of Precipitates in Al-Cu-Mg-Ag and Al-Cu-Mg Alloys”, Micron, 1980, Vol.11, pp.311-312
11. K. M. Knowles and W. M. Stobbs, “The Structure of {100} Age-hardening Precipitates in Al-Cu-Mg-Ag Alloys”, Acta Cryst., 1988, B44, pp.207-227
12. S. P. Ringer, W. Yeung, B. C. Muddle and I. J. Polmear, “Precipitate Stability in Al-Cu-Mg-Ag Alloys Aged at High Temperatures”, Acta Metall. Mater., 1994, Vol.42, pp.1715-1725
13. I. J. Polmear and M. J. Couper, “Design and Development of an Experimental Wrought Aluminum Alloy for Use at Elevated Temperature”, Metallurgical Transaction A, 1988, Vol.19A, pp.1027-1035
14. I. J. Polmear, G. Pons, Y. Barbaux, H. Octor, C. Sanchez, A. J. Morton, W. E. Borbidge and S. Rogers, “After Concorde: Evaluation of Creep Resistant Al- Cu-Mg-Ag Alloys”, Materials Science and Technology, 1999, Vol.15, pp.861-868
15. K. Hono, N. Sano, S. S. Babu, R. Okano and T. Sakurai, “Atom Probe Stuty of the Precipitation Process in Al-Cu-Mg-Ag Alloys”, Acta Metall. Mater., 1993, vol.41, pp.829-838
16. R. K. Wyss and R. E. Sanders, “Microstructure-Property Relationship in a 2xxx Aluminum Alloy with addition”, Metallurgical Transaction A, 1988, Vol.19A, pp.2523-2530
17. 張志鴻, “銀含量對於A201鑄造鋁合金Ω相析出影響”, 國立中央大學機械工程研究所碩士論文, 2000
18. A. Grag, Y. C. Chang and J. M. Howe, “Precipitation of the Ω Phase in an Al-4.0Cu-0.5Mg alloy”, Scripta Metallurgica et Materialia, 1990, Vol.24, pp.677-680
19. J. A. Taylor, B. A. Parker and I. J. Polmear, “Precipitation in Al-Cu-Mg-Ag Casting Alloy”, Metal Science, 1978, Vol.12, No.10, pp.478-482
20. K. Hono, T. Sakurai and I. J. Polmear, “Pre-Precipitate Clustering in an Al-Cu-Mg-Ag Alloy”, Scripta Metallurgica et Materialia, 1994, Vol.30, No.6, pp.695-700
21. S. P. Ringer, K. Hono, I. J. Polmear and T. Sakurai, “Nucleation of Precipitates in Aged Al-Cu-Mg-(Ag) Alloys with High Cu:Mg Ratios”, Acta Materialia, 1996, Vol.44, No.5, pp.1883-1898
22. L. Reich, M. Murayama and K. Hono, “Evolution of Ω Phase in an Al-Cu-Mg-Ag Alloy – A Three-Dimensional Atom Probe Study”, Acta Materialia, 1998, Vol.46, No.17, pp.6053-6062
23. O. Beffort, C. Solenthaler, P. J. Uggowitzer and M. O. Speidel, “High toughtness and high strength spray-deposited AlCuMgAg-base alloys for use at moderately elevated temperatures”, Materials Science and Engineering A, 1995, Vol.191A, pp.121-134
24. R. E. Reed-Hill and R. Abbaschian, “Physical Metallurgy Principles”, 3rd ed., PWS Publishing Company, 1991, pp.534-535
25. T. D. Burleigh, “The Postulated Mechanisms for Stress Corrosion Cracking of Aluminum Alloys”, Corrosion, 1991, Vol.47, pp.89-98
26. M. S. Misra and K. J. Oswalt, “Corrosion Behavior of Al-Cu-Ag (A201) Alloy”, Metals Engineering Quarterly, 1976, pp.39-44
27. “Aerospace Material Specification”, AMS, 1987, 4235A, AMS4236
28. B. Hemsworth, T. Boniszewski and N. F. Eaton, “Classification and Definition of High Temperature Welding Cracks in Alloys”, Metal Construction & Brit. Welding Journal, 1969, Vol.1, pp.5-16
29. K. E. Eastering, “Introduction To The Physical Metallurgy Of Welding”, Butterworth Heinemann, 1992
30. J. Koziarski, “Some Considerations On Weldability Of Aluminum Alloys”, Welding Journal, 1953, pp.970-986
31. J. R. Davis, “Aluminum and Aluminum alloys”, ASM Specialty Handbook, ASM International, 1994, pp.376-419
32. J. C. Borland, “Generalized Theory of Syper-Solidus Cracking in Weld and Casting”, Brit. Welding Journal, 1960, Vol.7, No.8, pp. 508-512
33. Steeubergen and Thornton, “A Quantitative Determination of the condition for Hot Cracking During Welding for Aluminum Alloys”, Welding Journal, 1970, Vol.2, pp.61-68
34. J. B. Arthur, “Fusion Welding of 24S-T3 Aluminum Alloy”, Welding Journal, 1955, pp.558-569
35. S. Kou, “Welding Metallurgy”, John Wiley And Sons NY, 1987, pp.129-295
36. R. P. Meister and D. C. Martin, “Welding of Aluminum and Aluminum Alloys”, Deffense Metals Information center, 1967, p.1
37. W. I. Pumphrey and D. C. Moore, “Cracking during and after Solidification in some Aluminum-Copper-Magnesium Alloys of High Purity”, J. Inst. Metals, 1948, Vol.73, pp.428-438
38. W. I. Pumphrey and J. V. Lyons, “Cracking during the Casting and Welding of the More Common Binary Aluminum Alloys of Commercial Quality”, J. Inst. Metals, 1948, Vol.74, pp.439-455
39. H. T. Kim, S. W. Nam and S. H. Hwang, “Study On the Solidification Cracking Behaviour of High Strength Aluminum Alloy Welds—Effect of Alloying Elements and Solidification Behaviours”, J. Mater. Sci., 1996, Vol.31, No.3, pp.2859-2864
40. J. A. Brooks and K. W. Mahin, “Solidification and Structure of Welds”, 1990
41. N. F. Gittos and M. H. Scott, “Heat Affected Zone Cracking of Al-Mg-Si Alloys”, Welding Journal, 1981, Vol.60, pp.95-103
42. A. F. Norman, V. Drazhner and P. B. Prangnell, “Effect of Welding Parameters on the Solidification Microstructure of Autogenous TIG Welds in an Al-Cu-Mg-Mn Alloy”, Materials Science & Engineering A, 1999, Vol.259A, pp.53-64
43. V. G. Davydov, T. D. Rostova, V. V. Zakharov, Yu. A. Filatov and V. I. Telagin, “Scientific Principles of Making an Alloying Addition of Scandium to Aluminum Alloys”, Materials Science & Engineering A, 2000, Vol.280A, pp.30-36
44. A. F. Norman, P. B. Prangnell and R. S. McEwen, “The Solidification Behaviour of Dilute aluminum-Scandium Alloys”, Acta Materialia, 1999, Vol.46, pp.5715-5732
45. L. K. Lamikov and G. V. Samsonov, “Soviet Non-Ferrous Metals Res.”(USSR), 1964, vol.9, pp.79-82
46. K. A. Gschneidner and F. W. Calderwood, “Bull. Alloy Phase Diagr.”, 1989, Vol.10, pp.34s
47. G. M. Novotny and A. J. Ardell, “Precipitation Of Al3Sc In Al-Sc Alloys”, Materials Science & Engineering A, 2001, Vol.318A, pp. 144-154
48. “Applications of Scandium In Al-Sc Alloys”, Ashurst Technology Web Page (http://www.scandium.org/Sc-Al.htm)
49. K. B. Hyde, A. F. Norman and P. B. Prangnell, “The Effect of Cooling Rate on the Morphology of Primary Al3Sc Intermetallic Particles in Al-Sc Alloys”, Acta Materialia, 2001, Vol.49, pp.1327-1337
50. L. L. Rokhlin, T. V. Dobatkina, N. R. Bochvar and E. V. Lysova, “Investigation of phase equilibria in alloys of the Al-Zn-Mg-Cu-Zr-Sc system”, Journal of Alloys and Compounds, 2004, Vol.367, pp.10-16
51. Z. Yin, Q. Pan, Y. Zhang and F. Jiang, “Effect of Minor Sc and Zr on the Microstructure and Mechanical Properties of Al-Mg Based Alloys”, Materials Science & Engineering A, 2000, Vol.280A, pp. 151-155
52. B. Forbord, W. Lefebvre, F. Danoix, H. Hallem and K. Marthinsen, “Three dimensional atom probe investigation on the formation of Al3(Sc,Zr)-dispersoids in aluminim alloys”, Scripta Materialia, 2004, Vol.51, pp.333-337
53. V. Ocenasek and M. Slamova, “Resistance To Recrystallization Due To Sc And Zr Addition to Al-Mg Alloys”, Material Characterization, 2001, Vol. 47, pp.157-162
54. E. A. Marquis and D. N. Seidman, “Nanoscale Structure Evolution Of Al3Sc Precipitation in Al(Sc) Alloys”, Acta Materialia, 2001, Vol.49, pp.1909-1919
55. D. N. Seidman, E. A. Marquis and D. C. Dunand, “Precipitation Strengthening at Ambient and Elevated Temperature of Heat- Treatable Al(Sc) Alloys”, Acta Materialia, 2002, Vol.50, pp.4021- 4035
56. M. L. Kharakterova, “Phase Composition of Al-Cu-Sc Alloys at Temperatures of 450 and 500℃”, Izvestiya Akademii Nauk SSSR. Metally, 1991, No. 4, pp.195-199
57. V. V. Zakharov and T. D. Rostova, “On the Possibility of Scandium Alloying of Copper-Containing Aluminum Alloys”, Metal Science and Heat Treatment, 1995, Nol.37, No.1-2, pp.65-69
58. A. F. Norman, K. B. Hyde, F. Costello, S. Thompson, S. Birely and P. B. Prangnell, “Examination of the Effect of Sc on 2000 and 7000 Series Aluminium Alloy Casting : For Improvements in Fusion Welding”, Materials Science & Engineering A, 2003, Vol.354A, pp. 188-198
59. K. Yu, W. Li, S. Li and J. Zhao, “Mechanical Properties and Microstructure of Aluminum Alloy 2618 with Al3(Sc,Zr) Phases”, Materials Science & Engineering A, 2004, Vol.368A, pp.88-93
60. 簡朝棋, “A201鋁合金添加稀土元素後之機械性能研究”, 國立台灣大學材料科學與工程研究所碩士論文, 2002
61. 陳永斌, “微量Sc、Zr對Al-4.6Cu-0.3Mg-0.6Ag合金微結構與機械性質之影響”, 國立中央大學機械工程研究所碩士論文, 2004
62. “ASTM E112-88”, Annual Book of ASTM Standards, 1990, Vol.03.01
63. “ASTM B557M-81”, Annual Book of ASTM Standards, 1991, Vol.03.01
64. A. K. Mukhopadhyay, “On the Nature of the Second Phase Particles Present in an As-Cast Al-Cu-Mg-Ag Alloy”, Scripta Materialia, 1999, Vol.41, pp.667-672
65. A. K. Mukhopadhyay, “Compositional Characterization of Cu-Rich Phase Particles Present in As-Cast Al-Cu-Mg-(Li) Alloys Containing Ag”, Metallurgical and Materials Transactions A, 1999, Vol.30A, pp.1693-1704
66. J. E. Hatch, “Aluminum: Properties and Physical Metallurgy”, London, Butterwordths and Co., Ltd., 1976, pp.205
67. 劉國雄, 林樹均, 李勝隆, 鄭晃忠, 葉均蔚, “工程材料科學”, 全華科技圖書股份有限公司, 1999, pp.399-432
68. P. A. Kammer, M. D. Randall, R. E. Monore and W. F. Groth, “The Relation Of Filler Wire Hydrogen To Aluminum-Weld Porosity”, Welding Journal, 1963, pp.433-441
69. D. L. Cheever, P. A. Kammer, R. E. Monore and D. C. Martin, “Effect Of Experimental 2219 And 2014 Aluminum Weld Composition Variation”, Welding Journal, 1969, pp.348-358