跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾前紹
Chien-Shao Tseng
論文名稱: 即時多媒體環境下的負載適應性 TCP-Friendly 速率控制
TMRC: A Load-Adaptive TCP-Friendly Rate Control Protocol for Real-time Multimedia Environment
指導教授: 吳曉光
Eric Hsiao-Kuang Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 91
語文別: 英文
論文頁數: 43
中文關鍵詞: 速率控制即時多媒體
外文關鍵詞: TCP-Friendly, real time, multimedia, Rate Control
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們提出並分析一套新的網路壅塞控制機制TMRC(Time-based Model Rate Control),使其能夠應用在即時多媒體(Real-time Multimedia)的環境上。TMRC為使用以時間為基礎的端點對端點壅塞控制機制,能夠估測出適當的傳輸速率,同時確保與其他網路連線相互競爭時的公平性。
    使用TMRC,傳送端可以依據接收端所估測出來的數值,精確地調整其傳輸速率,以提供與TCP友善且公平的競爭分享網路頻寬,同時也確保網路資料傳輸時,速率的穩定性。如此的特性,使我們所提出的方法能夠符合即時多媒體串流的需求。
    為了展示TMRC的效能,我們將與其他TCP-Friendly速率控制機制做比較,如TFRC(TCP-Friendly Rate Control)。


    In this paper, we introduce and analyze a new congestion control
    approach for real-time multimedia applications, called TMRC
    (Time-based Model TCP-Friendly Rate Control).
    TMRC is a time-based end-to-end congestion control mechanism,
    which could estimate an adequate sending rate and assures
    the fairness against competing flows.
    Via this mechanism, the sender can explicitly adjust its sending rate as
    a function of the measured rate reported by the correspond receiver.
    In long term, TMRC acts as a TCP-friendly flow with the same throughput as
    other flows while in short term it performs more stable in its sending rate.
    This makes our mechanism suitable for real-time multimedia applications.
    To demonstrate its better performance,
    this paper also compare TMRC to other representative
    TCP-friendly rate control mechanism, such as TFRC.

    1 Introduction 1 2 Related Works 7 3 TMRC Protocol 13 4 Simulation and Analysis 22 5 Conclusion and Future Works 39

    [1] B. Khasnabish, “Next-Generation Corporate Networks,” IT Professional, 2(1):56–60, January/February 2000.
    [2] Y.-G. Kim, J. Kim, and C.-C. J. Kuo, “Tcp-friendly internet video with smooth and fast rate adaptation and network-aware error control,” submitted to IEEE Trans. on Circuits and Systems for Video Technology (Special Issue on Internet Streaming Video), (submitted June 2000, revised).
    [3] J. Postel, “User Datagram Protocol,” RFC 768, Standard, August 1980.
    [4] S. Floyd and K. Fall, “Promoting the Use of End-to-End Congestion Control in the Internet,” IEEE/ACM Transactions on Networking, August 1999.
    [5] L. Trajkovic and S. J. Golestani, “Congestion Control for Multimedia Services,” IEEE Network, 6(5):20–26, Sept. 1992.
    [6] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang, “Recommendations on Queue Management and Congestion Avoidance in the Internet,” RFC 2309, Informational, April 1998.
    [7] Y. R. Yang and S. S. Lam, “General AIMD Congestion Control,” Technical Report TR-2000-09, May 9, 2000; Proceedings ICNP 2000, Osaka, Japan, November 2000.
    [8] D. Bansal and H. Balakrishnan, “Binomial Congestion Control Algorithms,” In Proceedings INFOCOM 2001, April 2001.
    [9] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equationbased Congestion Control for Unicast Application,” February 2000.
    [10] I. Rhee, V. Ozdemir, and Y. Yi, “TEAR: TCP Emulation at Receiver — Flow Control for Multimedia Streaming,” NCSU Technical Report, April 2000.

    QR CODE
    :::