跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱繼正
Ji-Zheng Chiu
論文名稱: 人行吊橋背拉鋼索索力之動態應變式監測計
Cable Force Monitoring of Pedestrian Suspension Bridge by Resistance Type Strain Gauge
指導教授: 王仲宇
Chung-Yue Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 135
中文關鍵詞: 吊橋索力監測微振法自然振動頻率電阻式應變計
外文關鍵詞: cable force monitoring, resistance strain gauge
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對吊橋、斜張橋等鋼纜支撐橋梁而言,纜索為其重要的受力部分,橋體的受力狀態往往可由纜索索力的變化得知。因此,索力之監測為此類橋梁安全性確保的重要手段。而在監測索力的諸方法中,微振法由於具有非侵入性、操作簡便且能得到足夠精確之結果等優點,而被廣泛運用。為了減少監測儀器成本,本研究嘗試以電阻式應變計作為量測自然振動頻率之工具。本研究進行之相關實驗,包含鋼棒振動實驗、預力鋼絞線振動實驗,以及人行吊橋的現地量測實驗。實驗結果證實,若是作為電阻式應變計間接安裝平面之AB膠填充層與纜索之複雜表面保持足夠貼合,使纜索因振動產生之軸向應變的動態變化能確實為安裝於AB膠填充層上之電阻式應變計所量測,則電阻式應變計便能夠正確量測出纜索的自然振動頻率,進而評估纜索之現有索力。


    For cable-supported bridge, like suspension bridge and cable-stayed bridge, cable is an important part to be taken force. The structure condition of the bridge usually can be known from the change of the cable force. So cable force monitoring is an important method to ensure the safety of the cable-supported bridge. In various ways to monitor the cable force, ambient vibration method is widely used since its advantage include non-invasive, easy to operate while getting good enough data. To reduce the cost of the monitoring, this research tried to use resistance strain gauge as the device to measure the natural frequency of the structure. The related experiments include the experiment of vibration of steel bar, the experiment of vibration of reinforced cable, local measurement experiment at a pedestrian suspension bridge. The experiment result confirmed that if the AB glue layer, as an indirect mounting plane for resistance strain gauge, remains sufficiently conformable to the complex surface of the cable, so the dynamic change of the axial strain of the cable caused by the vibration of the cable can be measured by the resistance strain gauge mounted on the AB glue layer, the resistance strain gauge can measure the natural frequency of the cable, and then evaluate the existing cable force of the cable.

    摘要 I Cable Force Monitoring of Pedestrian Suspension Bridge by Resistance Type Strain Gauge II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 1.3 論文架構 2 第二章 文獻回顧 3 2.1 索力量測方法 3 2.1.1 油壓千斤頂 3 2.1.2 荷重計 3 2.1.3 磁通量感應計 4 2.1.4 光纖光柵 4 2.2 微振法 5 2.2.1 基本解析公式 5 2.2.2 索力計算公式探討 5 2.2.3 有限元素法索力求解 6 2.2.4 等效簡支梁法 6 2.2.5 雙振頻法 9 2.3 多重隨機遞減法(Multiple Random Decrement Method) 10 2.4 向量式有限元素法 16 2.4.1 概述 16 2.4.2 點值描述 17 2.4.3 途徑單元 18 2.4.4 虛擬逆向剛體運動 19 2.4.5 質點受力求解 19 2.4.6 運動方程式求解 22 2.4.7 向量式有限元素模型建立流程 23 第三章 動態應變式監測計 33 3.1 電阻式應變計簡介 33 3.2 監測計思路與方案 36 3.3 限制與影響 40 第四章 實驗規劃 45 4.1 前言 45 4.2 鋼棒實驗 45 4.2.1 實驗目的 45 4.2.2 實驗設置與流程 45 4.3 鋼絞線實驗 47 4.3.1 實驗目的 47 4.3.2 實驗設置與流程 47 4.4 現地量測實驗 50 4.4.1 實驗目的 50 4.4.2 實驗設置與流程 50 第五章 實驗結果與討論 53 5.1 鋼棒實驗 53 5.1.1 自然振動頻率量測 53 5.1.2 小結 53 5.2 鋼絞線實驗 57 5.2.1 自然振動頻率量測 57 5.2.2 等效簡支梁法使用 57 5.2.3 小結 58 5.3 現地量測實驗 81 5.3.1 自然振動頻率量測耐久度測試 81 5.3.2 小結 82 第六章 結論與建議 110 附錄A 軸力梁振動方程式推導 117

    [1] Irvine, H. Max, Cable Structures, The MIT Press, 1981.
    [2] Geradin, Michel, Daniel J. Rixen, Mechanical Vibrations: Theory and Application to Structural Dynamics, John Wiley & Sons, 2013.
    [3] 中國土木水利工程學會, “第五章:纜索,” 於 橋梁檢測基本理論 , 科技圖書股份有限公司, 2013, pp. 1-7.
    [4] 中國土木水利工程學會, “第四章:纜索預力,” 於 橋梁檢測方法與應用 , 科技圖書股份有, 2013, pp. 104-110.
    [5] 陳央洲, 根據錨頭應變量測進行預力鋼腱拉力損失監測之研究, 國立雲林科技大學營建工程系: 博士論文, 2012.
    [6] Li, Hui, Jinping Ou, Zhi Zhou, "Applications of optical fibre Bragg gratings sensing technology-based smart stay cables," Optics and Lasers in Engineering, vol. 47(10), pp. 1077-1084, 2009.
    [7] Wang, Ming L. , G. Wang, Y. Zhao, “Application of EM Stress Sensors in Large Steel Cables,” Sensing Issues in Civil Structural Health Monitoring, pp. 145-154, 2005.
    [8] 姜建山, 唐德東, 周建庭, "橋梁索力量測方法與發展趨勢," 重慶交通大學學報, vol. 27(3), pp. 379-382, 2008.
    [9] 陳建州, 李政寬, 周智傑, 張國鎮, “斜張鋼纜索力分析之參數研究,” 中國土木水利工程學刊, 第18卷, 第4期, pp. 337-345, 2006.
    [10] 劉曉慶, 蔡健, 劉暉, 橋梁損傷診斷, 人民交通出版社, 2000.
    [11] Mehrabi, Armin B. , Habib Tabatabai, "Unified Finite Difference Formulation for Free Vibration of Cables," Journal of Structural Engineering, vol. 124(11), pp. 1313-1322, 1998.
    [12] Fang, Zhi, Jian-qun Wang, "Practical Formula for Cable Tension Estimation by Vibration Method," Journal of Bridge Engineering, vol. 7(1), pp. 161-164, 2012.
    [13] Hiroshi, Zui, Tohru Shinke, Yoshio Namita, "Practical Formulas for Estimation of Cable Tension by Vibration Method," Journal of Structural Engineering, vol. 122(6), pp. 651-656, 1996.
    [14] 黃景徽, 根據微振訊號並應用等效簡化模型之斜張鋼纜索力分析, 國立雲林科技大學營建工程系: 碩士論文, 2008.
    [15] 李政寬, 陳建州, 周智傑, 張國鎮, “斜張鋼纜微振訊號有限元素法解析,” 中國土木水利工程學刊,第18卷,第2期, pp. 279-288, 2006.
    [16] Chen, Chien-Chou, Wen-Hwa Wu, Chin-Hui Huang, Gwolong Lai, "Determination of stay cable force based on effective vibration length accurately estimated from multiple measurements," Smart Structures and Systems, vol. 11(4), pp. 411-433, 2013.
    [17] Chen, Chien-Chou, Wen-Hwa Wu, Min-Ray Leu, Gwolong Lai, "Tension determination of stay cable or external tendon with complicated constraints using multiple vibration measurements," Measurement, vol. 86, pp. 182-195, 2016.
    [18] Chen, Chien-Chou, Wen-Hwa Wu, Shin-Yi Chen, Gwolong Lai, "A novel tension estimation approach for elastic cables by elimination of complex boundary condition effects employing mode shape functions," Engineering Structures, vol. 166, pp. 152-166, 2018.
    [19] 巫文聖, 以軸力梁理論提昇預力鋼纜傳統評估公式實用性之研究, 朝陽科技大學營建工程系: 碩士論文, 2014.
    [20] 廖釗銨, 以鋼纜微振量測資料應用多重隨機遞減法進行斜張橋鋼纜與橋體之振態參數識別, 國立雲林科技大學營建工程系: 碩士論文, 2007.
    [21] Wu, Wen-Hwa, Chien-Chou Chen, Jau-An Liau, "A Multiple Random Decrement Method for Modal Parameter Identification of Stay Cables Based on Ambient Vibration Signals," Advances in Structural Engineering, vol. 15(6), pp. 969-982, 2012.
    [22] Cole. Henry. A. Jr, "Method and apparatus for measuring the damping characteristics of a structure," US Patent, no. 3620069, 1971.
    [23] Vandiver, J. K. , A. B. Dunwoody, R. B. Campbell and M. F. Cook, "A Mathematical Basis for the Random Decrement Vibration Signature Analysis Technique," Journal of Mechanical Design, no. 104(2), 1982.
    [24] Bedewi, N. E. , The Mathematical Foundation of the Auto and Cross-random Decrement Techniques and the Development of a System Identification Technique for the Detection of Structural Deterioration, University of Maryland, College Park: Ph. D. Thesis, 1986.
    [25] 黃炯憲,蔡益超,葉錦勳, “隨機遞減法在建築物微振時間域系統參數識別之應用,” 中國土木水利工程學刊,第10卷,第3期, pp. 537-547, 1998.
    [26] Huang, C. S. , C. H. Yeh, "Some Properties of Randomdec Signatures," Mechanical Systems and Signal Processing, vol. 13(3), pp. 491-507, 1999.
    [27] 王國棟, 微動量測之系統識別, 國立成功大學土木工程學系: 碩士論文, 1999.
    [28] Yang, J. C. S. , G. Z. Qi , V. Pavlin, A. J. Durelli, L. Esteva, "In-situ determination of soil damping in the lake deposit area of Mexico City," Soil Dynamics and Earthquake Engineering, vol. 8(1), pp. 43-52, 1989.
    [29] Li, H. C. H. , M. Weis, I. Herszberg, A. P. Mouritz, "Damage detection in a fibre reinforced composite beam using random decrement signatures," Composite Structures, Vols. 66(1-4), pp. 159-167, 2004.
    [30] Marukawa, H. , N. Kato, K. Fujii, Y. Tamura, "Experimental Evaluation of Aerodynamic Damping of Tall Buildings," Journal of Wind Engineering and Industrial Aerodynamics, Vols. 59(2-3), pp. 177-190, 1996.
    [31] Ueng, Jin-Min, Chi-Chang Lin, Pao-Lung Lin, "System identification of torsionally coupled buildings," Computers & Structures, vol. 74(6), pp. 667-686, 2000.
    [32] Qin, Q. , H. B. Li, L. Z. Qian, C. K. Lau, "Modal Identification of Tsing Ma Bridge by Using Improved Eigensystem Realization Algorithm," Journal of Sound and Vibration, vol. 247(2), pp. 325-341, 2001.
    [33] Lee, J. W. , J. D. Kim, C. B. Yun, J. H. Yi, J. M. Shim, "Health-monitoring Method for Bridges under Ordinary Traffic Loadings," Journal of Sound and Vibration, vol. 257(2), pp. 247-264, 2002.
    [34] Jeary, Alan P., "The description and measurement of nonlinear damping in structures," Journal of Wind Engineering and Industrial Aerodynamics, Vols. 59(2-3), pp. 103-114, 1996.
    [35] 丁承先,段元鋒,吳東岳, 向量式結構力學, 北京: 科學出版社, 2012.
    [36] Ehrenburg, D., "Transmission line catenary calculations," Transactions of the American Institute of Electrical Engineers, vol. 54(7), pp. 719-728, 1935.
    [37] Charles, F. , W. Keith, "An introduction to structural health monitoring," Royal Society of London Transactions Series A, vol. 365(1851), pp. 303-315, 2007.
    [38] 國立中央大學土木工程學系, “第二章 電子式測計原理,” 於 結構工程實驗講義, pp. 7-12.

    QR CODE
    :::