跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳侑謙
You-cian Wu
論文名稱: 顆粒特性及水流條件對顆粒體運動及 淤積型態之實驗研究
指導教授: 周憲德
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 115
中文關鍵詞: 沖積扇基準水位前積層坡度頂積層坡度
外文關鍵詞: Alluvial fan, Base-level water depths, topset slope, foreset slope
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球氣候變遷影響下,極端的氣候事件增加,高強度降雨所造成之災情變的更加嚴重且頻繁,土石流與洪流事件也隨之增加。台灣山麓沖積扇經常成為各村莊、部落的聚集地。若產生土石流災害,對人民生命安全及財產的損失將造成嚴重的威脅。本實驗利用小尺度的三維渠槽,搭配雷射光與相機進行研究,並於流量率定時探討桶倉(silo)內粒流動之情形,再藉由改變水砂比(n)以及積水深度對沖積扇(alluvial fans)型態之縱剖面、橫剖面、扇緣堆積形態以及頂積層(topset)與前積層(foreset)角度進行分析及探討。

    本實驗主要控制參數為顆粒粒徑、水砂比(n)、積水深度,其水砂比為水流量(Qw)與顆粒出流量(Qs)之比值(Qw/Qs)。研究結果顯示桶倉開口大小與顆粒粒徑是主要影響流量的因子,流動情況與流出開口之順序與顆粒是否在不動區內有極大之關係。縱剖面堆積高度與積水高度和顆粒粒徑有關,且積水深淺時,縱剖面呈現一凹向上之曲線形態。橫剖面型態則為一凸向上之剖面,並隨著縱方向越來越大而更加明顯,並於積水深度較深時,幾乎趨於凸向上之剖面甚至呈直線,而形態也越趨於一致。沖積扇堆積範圍與水砂比大小有關,但積水深越深,因受水體阻擋而使得堆積形態趨於相似。頂積層角度於水砂比越大或積水深越深而變小;前積層角度則於積水深變深時略增。


    Under the impact of global climate change, the slope-land disasters such as landslides and flash floods caused by highly intensive rainfalls occur more frequently. Alluvial fans at foothills in Taiwan often accommodate villages and infrastructures, and are high-risk areas for the landslides and debris flows. In this study, the formation for alluvial fans is explored by using experimental study. A small-scale flume-basin model was setup with silo, laser lights and camera to investigate the fan forming processes. By changing the sediment concentration (i.e., the ratio of sediment discharge(Qs)to water discharge (QW)) and the base-level water depths, the longitudinal profiles, cross profiles, fan shapes, angles of topset and foreset angle have been analyzed. The size of the silo opening and particle size control the particle discharge. The longitudinal profiles of the fans depict a concave shape, while the lateral profiles are convex. The angles of topset slope decrease with decreasing sediment concentration, while the foreset slopes with tail water are close to the friction angle of the sediment.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號表 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機 4 1.3 研究方法 4 1.4 論文架構 5 第二章 文獻回顧 7 2.1 沖積扇理論 7 2.2 沖積扇發展過程 9 2.3 沖積扇發展機制與形態 11 2.4 桶倉顆粒流動特性 15 第三章 實驗配置與分析方法 17 3.1 實驗桶倉與渠槽配置 17 3.2 影像擷取配備 18 3.3 顆粒材料性質 19 3.4 雷射標定裝置 20 3.5 實驗步驟 21 3.5.1 第一部分流量分析實驗步驟為如下: 21 3.5.2 第一部分流況分析實驗步驟為如下: 21 3.5.3 第二部分實驗步驟為如下: 22 3.6 分析方法 23 3.6.1 桶倉流量率定: 23 3.6.2 桶倉顆粒表面線之判定: 23 3.6.3 桶倉不動區之判定: 24 3.6.4 桶倉軌跡線分析 24 3.6.5 沖積扇形態量測方法 25 3.6.6 沖積扇縱剖面量測方法 26 3.6.7 沖積扇橫剖面量測方法 26 3.6.8 沖積扇扇緣堆積範圍 27 3.6.9 沖積扇等高線量測方法 27 第四章 結果與討論 28 4.1 顆粒之桶倉流量分析 28 4.1.1 顆粒流量分析 28 4.1.2 顆粒表面線分析 34 4.1.3 顆粒流動區分析 44 4.1.4 顆粒軌跡線分析 49 4.2 沖積扇各組實驗參數及水砂比(n) 52 4.3 沖積扇縱剖面分析 54 4.4 沖積扇橫剖面分析 60 4.5 扇緣堆積形態 77 4.6 等高線歷程變化 84 4.7沖積扇量測資料與角度變化 92 第五章 結論與建議 96 5.1結論 96 5.2建議 97 參考文獻 98

    [1] 吳俊銓 (2012). 山洪濁流形成沖積扇之實驗研究. 國立中央大學 土木工程研究所碩士論文.
    [2] 張瑞津 (1997). 臺灣沖積扇之分布、形態及地形意義. 地質17 卷,1-2 期,69-93.
    [3] 曾志明 (2000) 河口三角洲成長過程之研究. 國立成功大學水利及海洋工程研究所博士論文.
    [4] 曾文毅 (2014) 不同輸砂濃度及基準水面條件下之沖積扇形態分析. 國立中央大學 土木工程研究所碩士論文.
    [5]黃郅軒 (2011). 儲槽內顆粒流動與發聲特性之研究.中央大學土木工程研究所碩士論文.
    [6] 楊淑君 (1995). 臺灣沖積扇之地形學研究. 國立臺灣師範大學 地理學系博士論文.
    [7] 蔡元芳 (1999). 土石流扇狀地形狀特性之研究. 國立成功大學水利及海洋工程研究所博士論文.
    [8] 謝正倫 (1997) 河口三角洲發展過程之實驗研究. 中國土木工程學刊 第9卷 第二期,343-350
    [9] Allen, P.A and Hovius, N. (1998) “Sediment supply from landslide- dominated catchments: Implications for basin-margin fans.,, Basin Research, 10, 19-35.
    [10] Blair, T. C. and McPherson, J. G. (1994). “Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes and facies assemblages. ,, J. Sed. Res., A64(3), 450-489.

    [11] Bull, W.B. (1964) “Geomorphology of segmented alluvial fans in western Fresno County, California. In: US Geological Survey.,, Professional Papers, 352, 89–129.
    [12] Clarke, L., Timothy A. Quine, Andrew Nicholas (2010) “An experimental investigation of autogenic behaviour during alluvial fan evolution,, Geomorphology, 115; p278–285
    [13] Drew, F. (1873) “Alluvial and lacustrine deposits and glacial records of the upper Indus basin: Quarterly ,, Journal of the Geological Society of London, v. 29, p. 441–471.
    [14] Dade,W. B. and M. E. Verdeyen (2007) “ Tectonic and climatic controls of alluvial-fan size and source-catchment relief,, Journal of the Geological Society , v.164; p353-358.
    [15] Frankel, K. L., and J. F. Dolan (2007), “Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data,, J. Geophys. Res., 112
    [16] Guerit, L. , F. M’etivier, O. Devauchelle, E. Lajeunesse, and L. Barrier (2014), “Laboratory alluvial fans in one dimension,, American Physical Society, 1539-3755,022203(1-7)
    [17] González-Montellano, C., F. Ayuga and J. Y. Ooi (2010) “Discrete element modelling of grain flow in a planar silo:Influence of simulation parameters
    [18] Henderson, F. M.(1966), Open channel flow: New York, Macmillan
    [19] Hunt, M. L., R. C. Weathers, A. T. Lee, and C. E. Brennen(1999) “Effects of horizontal vibration on hopper flows of granular materials ,, PHYSICS OF FLUIDS ,Vol 11, No 1

    [20] Kim, W., and Muto, T. (2007) “Autogenic response of alluvial-bedrock transition to base-level variation: Experiment and theory.,, Journal of Geophysical Research - Earth Surface, v. 112.
    [21] M. D. Reitz and D. J. Jerolmack (2012) “Experimental alluvial fan evolution: Channel dynamics,slope controls and shoreline growth ,, Journal of geophysical researh, vol. 117, F02021
    [22] M. D. Reitz, D. J. Jerolmack, and John B. Swenson, (2010) “Flooding and flow path selection on alluvial fans and deltas,, Geophysical Research Letters, VOL. 37, L06401
    [23] N. Hovius, C. P. Stark, Chu H.T., and Lin J.C. (2000) “Supply and Removal of Sediment in a Landslide-Dominated Mountain Belt: Central Range, Taiwan.,, Journal of Geology, vol 108, p.73–89
    [24] Powell, EJ., Wonsuck Kim, and Tetsuji Muto (2012), “Varying discharge controls on timescales of autogenic storage and release processes in fluvio-deltaic environments:Tank experiments,, Journal of geophysical research, Vol. 117, F02011
    [25] Parker, G., C. Paola, K. X. Whipple, and David Mohrig (1998) , “Alluvial fans formed by channelize fluvial and sheet flow. I:Theory,, Journal of hydraulic engineering, 124, p. 985-995
    [26] R. M. Iverson, S. P. Schilling, J. W. Vallance (1998), “Objective delineation of lahar-inundation hazard zones.,, GSA Bulletin; August; v. 110; no. 8; p. 972–984
    [27] Stock, J. D., Kevin M. Schmidt and David M. Miller (2008), “Controls on alluvial fan long-profiles.,, Geological Society of America Bulletin 2008;120, no.5-6;619-640

    [28] Schumm, S. A. (1977). “ The fluvial system.,, John Wiley & Sons, Inc., New York, N.Y.
    [30] V. Dijk, M., Postma, G. and Kleinhans, M.G. (2012) “ Contrasting morphodynamics in alluvial fans and fan deltas:effect of the downstream boundary,, Sedimentology, 59, 2125–2145.

    QR CODE
    :::