| 研究生: |
周朔緯 Shuo-Wei Chou |
|---|---|
| 論文名稱: |
以電腦模擬方法探討半導體製造供應鏈的前段製程與後段製程之作業協同 A Simulation-Based Study on the Coordination of Front-End and Back-End Operations in Semiconductor Manufacturing Supply Chain |
| 指導教授: |
呂俊德
Jun-Der Leu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 企業管理學系 Department of Business Administration |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 供應鏈 、半導體供應鏈 、離散事件模擬 |
| 外文關鍵詞: | Anylogic |
| 相關次數: | 點閱:33 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在半導體供應鏈中,前段製程廠以及後段製程廠的協同是相當重要的,而在目前的文獻中處理半導體供應鏈問題多半是透過混合整數線性規劃解決,而當談及透過模擬的手段 (例如:使用Anylogic、Mosilab等),大多都是只針對前段製程廠或者後段製程廠進行單一工廠的模擬,鮮少有人針對整體的供應鏈進行模擬。
本研究在供應鏈的背景下,探討供應鏈協同問題設計包含前段製程廠、後段製程廠以及區域集散中心的模擬模型,首先會提出一個混合整數線性規劃模型以提供數學的基礎,接著透過Anylogic進行兩階段的實驗,前置實驗的模擬時間為12個月,目的是為了收集整個供應鏈的數據,並針對工廠進行個別分析。正式實驗的模擬時間為27個月,並且進行50次的測試且每次測試會有五筆訂單,訂單抵達時間呈現指數分布、訂單的訂購量則為常態分配,接著,透過正式實驗取得的數據,分析在各項指標 (例如:訂單達交率等) 表現良好的測試具備何種特質。
最後,透過本研究可以發現在半導體供應鏈中,區域集散中心對前段製程廠所下的訂單對整體供應鏈的表現有顯著影響,另外也發現前段製程廠以及後段製程廠的協同能夠幫助增加訂單的達交率並降低平均在製品存量。
In the semiconductor supply chain, the coordination between Front-End and Back-End manufacturing factory plays a crucial role. However, current literature solving semiconductor supply chain problems relies on Mixed-Integer Linear Programming. When it comes to the simulation-based methods (e.g., using AnyLogic, Mosilab, etc.), most studies focus on simulating either the Front-End or Back-End manufacturing factory independently. Few studies have been made to model and analyze the semiconductor supply chain as a whole through simulation.
This study investigates coordination problems within the supply chain by developing a simulation model that incorporates Front-End manufacturing factory, Back-End manufacturing factory, and regional distribution centers. Initially, a Mixed-Integer Linear Programming model is proposed to provide a mathematical foundation. Then, a two-stage experiment is conducted using AnyLogic. The first stage is designed to simulate 12-month period and is designed to collect data across the supply chain, along with individual factory performance analysis. The second stage is designed to simulate 27-month period and consists of 50 experimental runs, each involving five orders. The arrival time of each order follows an exponential distribution, while order quantities follow a normal distribution. Based on the data gathered from the second simulation stage, this study analyzes which characteristics are associated with better performance across several key indicators (e.g., order fill rate). The results demonstrate that improved coordination between Front-End and Back-End facilities in the semiconductor supply chain can enhance order fulfillment rates and reduce work in process inventory levels.
王俊中、許秉瑜、蕭文龍、謝淑慈(2010)。全球供應鏈產銷規劃之決策支援架構:決策模型與演算法。臺大管理論叢,20(2),135-171。
呂俊德、蕭家安(2005)。以規則式專家系統方法改良SAP-APO方案中產銷規劃機制之探討。電子商務學報,7(4),351-370。
Bakir, M. A., & Byrne, M. D. (1998). Stochastic linear optimization of an MPMP production planning model. International Journal of Operations Research 55, 87-96.
Beamon, B. M. (1998). Supply chain design analysis: Models and Methods. International Journal of Production Economics, 55, 281-294.
Byrne, M. D., & Bakir, M. A. (1999). Production planning using a hybrid simulation-analytical approach. International Journal of Production Economics, 59, 305-311.
Cai, L., Li, W., Luo, Y., & He, L. (2022). Real-time scheduling simulation optimisation of job shop in a production-logistics collaborative environment. International Journal of Production Research, 61(5), 1373–1393.
Chandra, P., & Fisher, M. (1994). Coordination of production and distribution planning. European Journal of Operational Research, 72, 503-517.
Chang, Y. S., Carlyle, M., Fowler, J., & Shin, S. H. (1999). Planning for multiple flow semiconductor manufacturing systems. in Proc. Int. Conf. Semiconductor Manufacturing Operational Modeling Simulation, San Francisco, CA, 195–200.
Chen, W., Wang, Z., & Chan, F. T. (2017). Robust production capacity planning under uncertain wafer lots transfer probabilities for semiconductor automated material handling systems. European Journal of Operational Research, 261(3), 929-940.
Chiang, D., Guo, R. S., Chen, A., Cheng, M. T., & Chen, C. B. (2006). Optimal supply chain configurations in semiconductor manufacturing. International Journal of Production Research, 45(3), 631–651.
Christ, Q., Dauzère-Pérès, S., & Lepelletier, G. (2022). A three-step approach for decision support in operational production planning of complex manufacturing systems. International Journal of Production Research, 61(17), 5860–5885.
Christopher, M. (2005). Logistics and Supply Chain Management: Creating Value-Adding Networks (3th ed.). FT Prentice Hall., London.
Cinelli, M., Ferraro, G., Iovanella, A., Lucci, G., & Schiraldi, M. M. (2020) A network perspective for the analysis of bill of material, Procedia CIRP, 88, 19-24.
Corsini, R. R., Costa, A., Cannella, S., & Framinan, J. M. (2022). Analysing the impact of production control policies on the dynamics of a two-product supply chain with capacity constraints. International Journal of Production Research, 61(6), 1913–1937.
Dhaenens-Flipo, C. & Finke, G. (2001). An integrated model for an industrial production-distribution problem, IIE Transactions, 33, 705-715.
Ehm, H., & Lachner, F. (2019). Realisierung von Flexibilität in komplexen Versorgungsnetzwerken am Beispiel der Infineon Technologies AG. In Logistik der Zukunft-Logistics for the Future (1st ed.), edited by I. Göpfert, 397-414. Gabler, Wiesbaden, Springer.
Ehm, H., Neau, C., Martens, C. J., Lauer, T., Ponsignon, T., & Garcia, J. (2019). Research Opportunities Regarding Tree and Network Product Structure Representations in a Semiconductor Supply Chain. 2019 Winter Simulation Conference (WSC), National Harbor, MD, USA, 2019, 2429-2440.
Fleischmann, B., Ferber, S., & Henrich, P. (2006). Strategic planning of BMW’s global production network. Interfaces, 36(3), 194–208.
Hartwick, A., Ismail, A., Kalil V. N. B., Zeeshan, M., & Ehm, H. (2023). System Dynamics Simulation of External Supply Chain Disruptions on a Simplified Semiconductor Supply Chain. 2019 Winter Simulation Conference (WSC).
Hax, A. C., & Meal, H. C. (1973). Hierarchical integration of production planning and scheduling.
Hilali, H., Hovelaque, V., & Giard, V. (2022). Integrated scheduling of a multi-site mining supply chain with blending, alternative routings and co-production. International Journal of Production Research, 61(6), 1829–1848.
Hung, Y. F., & Leachman, R. C. (1996). A production planning methodology for semiconductor manufacturing based on iterative simulation and linear programming calculations. IEEE Transactions on Semiconductor Manufacturing, 9(2), 257-269.
Hung, Y. F., & Wang, Q. (1997). A new formulation technique for alternative material planning—An approach for semiconductor bin allocation planning. Computers and Industrial Engineering, 23, 281–297.
Ishii, K., Takahashi, K., & Muramatsu, R. (1988). Integrated production, inventory and distribution systems. International Journal of Production Research, 26, 473-482.
Ivanov, D., & Rozhkov, M. (2020). Coordination of Production and Ordering Policies under Capacity Disruption and Product Write-off Risk: An Analytical Study with Real-data Based Simulations of a Fast Moving Consumer Goods Company. Annals of Operations Research, 291(1-2), 387–407.
Jayaraman, V., & Pirkul, H. (2001). Planning and coordination of production and distribution facilities for multiple commodities. European Journal of Operational Research, 133, 394-408.
Jonsson, P., Kjellsdotter, L., & Rudberg, M. (2007). Applying advanced planning systems for supply chain planning: three case studies. International Journal of Physical Distribution & Logistics Management, 37(10), 816-834.
Kanter, R. M. (1995). Thriving Locally in Global Economy. Harvard Business Review, 73(5), 151–160.
Kendall, K. E., & Schniederjans, M. J. (1985). Multi-product production planning: A goal programming approach, European Journal of Operational Research, 20, 83-91.
Kim, J. G., & Lim, S. K. (2012). Order-lot Pegging for Minimizing Total Tardiness in Semiconductor Wafer Fabrication Process. Journal of the Operational Research Society, 63(9), 1258–1270.
Kim, Y. D., Bang, J. Y., An, K. Y., & Lim, S. K. (2008). A Due-Date-Based Algorithm for Lot-Order Assignment in a Semiconductor Wafer Fabrication Facility. IEEE Transactions on Semiconductor Manufacturing, 21(2), 209–216.
Kira, D., Kusy, M., & Rakita, I. (1997) A stochastic linear programming approach to hierarchical production planning. Journal of the Operational Research Society, 48, 207-211.
Love, C. E., & Turner, M. (1993). Note on utilizing stochastic optimal control in aggregate production planning. Eur. Journal of the Operational Research Society, 65, 199-206.
Min, H., & Zhou, G. (2002). Supply chain modeling: past, present and future. Computers & Industrial Engineering, 43, 231-249.
Mönch, L., Fowler, J. W., & Mason, S. J. (2013) Production Planning and Control for Semiconductor Wafer Fabrication Facilities. Modeling, analysis, and systems. Springer New York, New York.
Mönch, L., Uzsoy, R., & Fowler, J. W. (2017). A survey of semiconductor supply chain models part I: semiconductor supply chains, strategic network design, and supply chain simulation. International Journal of Production Research, 56(13), 4524–4545.
Murty, K. G. (1994). Operations research: deterministic optimization models. Prentice-Hall, Inc., USA.
Nagendra, P. B., & Das, S. K. (2001). Finite capacity scheduling method for MRP with lot size restrictions. International Journal of Production Research, 39(8), 1603–1623.
Padillo, J., Ingalls, R., & Brown, S. (1995). A strategic support system for supply network design and management in the semiconductor industry, Computers & Industrial Engineering, 29,443–447.
Potoradi, J., Boon, O. S., & Mason, S. J. (2002). Using Simulation-based Scheduling to Maximize Demand Fulfillment in a Semiconductor Assembly Facility. In E. Yucesan, C. H. Chen, J. L. Snowdon, & J. M. Charnes (Eds.), Winter Simulation Conference Proceedings, 2, 1857-1861.
Pontrandolfo, P., & Okogbaa, O.G. (1999). Global manufacturing: A review and framework for planning in a global corporation. International Journal of Production Research, 37, 1-19.
Qi, C., Sivakumar, A. I., & Gershwin S. B. (2009). An Efficient New Job Release Control Methodology. International Journal of Production Research, 47(3), 703–731.
Sebo, T. (1986). A long range production/resource planning system using linear programming. in Proc. 8th Annu. Conf. Computers Industrial Engineering, 180-183.
Shirodkar, S. (1999). A modular approach for modeling and simulating semiconductor supply chains. M.S. thesis, Dept. Industrial Eng., Arizona State Univ., Tucson.
Simchi-Levi, D., Kaminsky, P., & Simchi-Levi, E. (2003). Designing & managing the supply chain: concepts, strategies, and case studies (2th ed.). McGraw-Hill/Irwin.
Stadtler, H. (2005). Supply chain management and advanced planning - basics, overview and challenges. European Journal of Operational Research, 163(3), 575-588.
Stadtler, H., Kilger, C., & Meyr, H. (2015). Supply Chain management and advanced planning: concepts, models, software, and case studies. (5th ed.). Springer., Germany.
Stray, J., Fowler, J. W., Carlyle, W. M., & Rastogi, A. P. (2006). Enterprise-wide semiconductor manufacturing resource planning. IEEE Transactions on semiconductor manufacturing, 19(2), 259-268.
Tabucanon, M. T., & Ong, J. L. (1993). Multiproduct, multistage machine requirements planning models. Applied Mathematical Modelling, 17, 163-167.
Thomas, D. J., & Griffin, P. M. (1996). Coordinated supply chain management. European Journal of Operational Research, 94, 1-15.
Uzsoy, R., Lee, C. Y., & Martin-Vega, L. A. (1992). A review of production planning and scheduling models in the semiconductor industry part I: system characteristics, performance evaluation and production planning. IIE Transactions, 24(4), 47-60.
Vidal, C. J., & Goetschalckx, M. (1997). Strategic production-distribution models: A critical review with emphasis on global supply chain models. European Journal of Operational Research, 98, 1-18.
Vollmann, T. E., Berry, W. L., & Whybark, D. C. (1997). Manufacturing, Planning and Control Systems (4th ed.). McGraw-Hill Companies Inc., New York.
Wang, H., Tao, J., Peng, T., Brintrup, A., Kosasih, E. E., Lu, Y., Tang, R., & Hu, L. (2022). Dynamic inventory replenishment strategy for aerospace manufacturing supply chain: combining reinforcement learning and multi-agent simulation. International Journal of Production Research, 60(13), 4117-4136.
Yao, X., Almatooq, N., Askin, R. G., & Gruber, G. (2022). Capacity planning and production scheduling integration: improving operational efficiency via detailed modelling. International Journal of Production Research, 60(24), 7239-7261.
Zauner, G., Leitner, D., & Breitenecker, F. (2007). Modeling Structural - Dynamics Systems in MODELICA/Dymola, MODELICA/Mosilab and AnyLogic. Equation-Based Object-Oriented Languages and Tools, 99-110.
Zhang, G. Q., Graef M., & Roosmalen, F. V. (2006). The Rationale and Paradigm of “More than Moore”. Electronic Components and Technology Conference, San Diego, California, 151–157.