| 研究生: |
紀明儀 Ming-yi Ji |
|---|---|
| 論文名稱: |
傳播波與消逝波在多層與等效結構傳播特性之比較 |
| 指導教授: | 欒丕綱 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 等效介質理論 、雙曲超材料 |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為研究電磁波在多層結構內之傳播特性,經常將其多層結構根據等效介質理論(Effective Medium Theory) 以近似後的均勻介質表示。多層結構可以被設計成具有傳統材料沒有的電磁特性,例如光子晶體的頻帶隙 (bandgaps),以及雙曲超材料 (hyperbolic metamaterials) 的非正定介電常數 (indefinite permittivity) 等。人工材料提供了更廣的想像空間,及提高實現理論的可行性,等效介質理論則是一種能簡化描述多層週期結構的電磁特性之方法。以等效介質近似多層週期結構須注意有關結構尺寸與入射波長之間比例的條件,當條件有關的參數改變時,近似的結果會有所影響,影響結果為本論文中模擬之重點,結果說明各參數影響不一,且若能依不同介質或情況對參數做調整可以提高等效介質近似多層週期結構的可信度。
In order to study the propagation characteristics of electromagnetic waves in multilayer period structure, we usually approximate the multilayer period structure as an effective homogeneous medium by applying to it the Effective Medium Theory. Multilayer period structures as artificial materials can be designed to acquire the electromagnetic properties that do not appear in natural media, such like the bandgaps of photonic crystals and the indefinite permittivities of hyperbolic metamaterials. The artificial materials inspire human imagination and thus improve the feasibility of the theory. The effective medium theory is a convenient way to describe the propagation characteristics of the multilayer period structure. The ratio between the size of the constituents in the structure and the wavelength of the source wave must be properly chosen when we approximate the multilayer period structure as a homogeneous medium. If the parameters about the ratios are changed, the results of the approximation would be affected, and this fact is the main theme of this thesis. In this thesis we study for various cases all the parameters which influence the accuracy of effective medium theory and provide suggestions for reducing the difference between the effective medium and the real structure.
參考文獻
[1] M. I. D’yakonov,“New type of electromagnetic wave propagating at an interface.”Sov. Phys. JETP. 67,714-716 (1988).
[2] A. V. Kavokin, I. A. Shelykh, G. Malphuech,“Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B, 72, 233102 (2005).
[3] Omar Kidwai, Sergei V. Zhukovsky, J. E. Sipe,“Effective-medium approach to planar multilayer hyperbolic metamaterials:Strengths and limitations,”Phys. Rev. A, 85, 053842 (2012).
[4] Mikhail Noginov, Mikhail Lapine, Viktor Podolskiy, Yuri Kivshar,“Focus issue: hyperbolic metamaterials,”Opt. Express, 21, 14895-14897 (2013).
[5] 欒丕綱, 陳啟昌,“光子晶體-從蝴蝶翅膀到奈米光子學,”五南圖書出版股份有限公司 (2005).
[6] Qingyang Yue, Wei Li, Fanmin Kong, and Kang Li,“Enhancing the Out-Coupling Efficiency of Organic Light-Emitting Diodes Using Two-Dimensional Periodic Nanostructures,” Advances in Materials Science and Engineering, 2012, 985762 (2011).
[7] C. L. Cortes, W. Newman, S. Molesky and Z. Jacob,“Quantum nanophotoncs using hyperbolic metamaterials.”J. Opt., 14, 063001 (2012).
[8] Jarkko J. Saarinen , J. E. Sipe,“A Green function approach to surface optics in anisotropic media,” J. Mod. Opt. 55, 13-32 (2008).
[9] D. R. Smith, and D. Schurig,“Electromagneitic wave propagation in media with indefinite permittivity and permeability tensors,”Phys. Rev. Lett. 90, 077405 (2003).
[10] Pochi Yeh, Amnon Yariv, and Chi-Shain Hong,“Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Sc. Am. A, 67, 423-438 (1977).
[11] Slobodan M. Vukovic,Ilya V. Shadrivov, Yuri S. Kivshar,“Surface Bloch waves in metamaterial and metal-dielectric superlattices,”Appl. Phys. Lett. 95, 041902 (2009).
[12] John Polo, Tom Mackay, and Akhlesh Lakhtakia,“Electromagnetic Surface Waves: A Moderm Perspective,”ELSEVIER publishing (2013).
[13] Yu Guo, Ward Newman, Cristian L. Cortes, and Zubin Jacob, “Applications of Hyperbolic Metamaterial Substrates,” Advances in OptoElectronics, 2012, 452502 (2012).
[14] 陳鴻介,“廣義非均向性介質的光傳播研究”,國立中央大學,碩士論文,民國96年。
[15] Tzeng-Tsong Wu, Shu-Hsien Wu, Tien-Chang Lu,Shing-Chung Wang,“GaN-based high contrast grating surface-emitting lasers,”Appl. Phys. Lett. 102, 081111 (2013).
[16] Michael Slootsky and Stephen R. Forrest,“Full-wave simulation of enhanced outcoupling of organic light-emittingdevices with an embedded low-index grid,”Appl. Phys. Lett., 94, 163302 (2009).
[17] Stefan Nowy, Benjamin C. Krummacher, Jörg Frischeisen, Nils A. Reinke, Wolfgang Brütting,“Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency,” J. Appl. Phys. 104, 123109 (2008).
[18] Yoel Fink, Joshua N. Winn, Shanhui Fan, Chiping Chen, Jurgen Michel, John D. Joannopoulos, Edwin L. Thomas,“A Dielectric Omnidirectional Reflector,”Science, 282 , 1679-1682 (1998).
[19] P. G. Etchegoin, E. C. Le Ru, M. Meyer,“An analytic model for the optical properties of gold,”J. Chem. Phys. 125, 164705 (2006).
[20] T. S. Eriksson, A. Hjortsberg, G. A. Niklasson, and C. G. Granqvist “Infrared optical properties of evaporated alumina films,”Applied Optics, 20, 2742-2746 (1981).
[21] Omar Kidwai, Sergei V. Zhukovsky, J. E. Sipe,“Dipole radiation near hyperbolic metamaterials: Applicability of effective medium approximation,”Opt. Lett. 36, 2530-2532 (2011).
[22] M. A. Noginov, Yu. A. Barnakov, G. Zhu, T. Tumkur, H. Li, E. E. Narimanov,“Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett., 94,151105 (2009).
[23] Andres D. Neira, Gregory A. Wurtz, Pavel Ginzburg, Anatoly V. Zayats, “Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry,”Opt. Express, 22, 10987-10994 (2014).
[24] M. A. Noginov, H. Li,1 Yu. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, E. E. Narimanov,“Controlling spontaneous emission with metamaterials,”Opt. Lett. 35, 1863-1865 (2010).