跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳彥瑋
Yan-Wei Chen
論文名稱: 運用田口法於光纖收發器之散熱分析
指導教授: 鍾志昂
Chih-Ang Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 85
中文關鍵詞: 光纖收發器田口法電子產品散熱
外文關鍵詞: QSFP, Flotherm, Minitab
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,電子通訊產品逐漸成為生活中的不可或缺的一部分,隨著傳輸速率與距離的提升,電子產品朝向小型化且多功能發展,伴隨而來的高溫成為電子通訊產品的主要問題。在高溫環境長時間的運作下,電子產品容易產生電子元件失效、材料老化、內部焊點脫落等問題,再加上電子產品發展週期緊湊,以往透過經驗或試誤法進行產品設計需花費大量的時間與成本,因此發展系統化的設計,針對電子通訊產品的熱途徑進行建模與設計已成為產品設計重要的方向。
    本研究以計算流體力學的方法,使用Flotherm模擬軟體,針對光纖收發器的熱傳現象進行模擬。光纖收發器的主要散熱路徑為:積體電路晶片(IC)散熱墊片(TP)可插拔式光纖收發器(Plug)散熱器(HS),對此散熱路徑上的設計運用田口法,將溫度視為品質特性,使用望小特性並選用散熱墊片材質(A)、散熱器材質(B)、積體電路晶片與散熱墊片之間的接觸熱阻(C)、散熱墊片與可插拔式光纖收發器之間的接觸熱阻(D)、可插拔式光纖收發器與外殼之間的接觸熱阻(E)、可插拔式光纖收發器與散熱器之間的接觸熱阻(F)、外殼與散熱器之間的接觸熱阻(G)等七控制因子,控制因子使用三水準進行模擬(三水準即為控制因子的三種參數設置),選用直交表分析,用27組模擬實驗找出控制因子對溫度的重要性。散熱分析對溫度的重要性前三名的控制因子為:D控制因子、C控制因子、F控制因子。田口法最佳因子水準組合為A3B3C1D1E1F1G2(數字即為各控制因子的水準編號),經統計方式驗證,最佳因子水準為A3B3C1D1E1F1G1,原因在於G控制因子並非為主要散熱路徑,對溫度的影響很低,並且在田口法實驗設計上,G控制因子會被F控制因子所操控,因此會得出錯誤的最佳解。希望透過本研究,在QSFP產生熱問題時,可以對田口法顯著性前三名: D控制因子、C控制因子、F控制因子,這三個控制因子做解決,得到快速且有效的方案。


    In recent years, electronic communication products have gradually become an indispensable part of life. With the improvement of transmission rate and distance, electronic products are developing towards miniaturization and multi-functionality. The accompanying high temperature has become the main problem of electronic communication products. Under long-term operation in a high temperature environment, electronic products are prone to problems such as failure of electronic components, material aging, and internal solder joints falling off. In addition, the development cycle of electronic products is short. In the past, product design was carried out through experience and testing methods, which cost a lot of money and time.Therefore, it is necessary to quickly solve the thermal problem of electronic communication products through systematic design.
    In this study, the computational fluid dynamics method is used to simulate the heat transfer phenomenon of fiber optical transceiver using the Flotherm simulation software.The main heat dissipation path of fifer optical transceiver is: Integrated Circuit  Thermal Pad Quad Small Form-factor Pluggable  Heat sink. The Taguchi method is used for the design of this heat dissipation path, and the temperature is regarded as the quality characteristic.We consider the following control factors, which are the material of thermal pad(A), the material of heat sink(B), the contact thermal resistance between the integrated circuit and thermal pad(C), the contact thermal resistance between the thermal pad and quad small form-factor pluggable(D), the contact thermal resistance between the quad small form-factor pluggable and cage(E), the contact thermal resistance between the quad small form-factor pluggable and heat sink(F), the contact thermal resistance between the cage and heat sink(G). The top three of the importance of thermal design to temperature are: D control factor, C control factor and F control factor. The best factor level combination of Taguchi method is A3B3C1D1E1F1G2, the number is the level of each control factor. After statistical verification, the best factor level is A3B3C1D1E1F1G1. The reason is that the G control factor is not the main heat dissipation path, and its importance to temperature is very low, and in the analysis of Taguchi method, the G control factor is manipulated by the F control factor, so it gives the wrong optimal solution. When thermal problems occur in fiber optical transceiver, the results of this paper can be a reference, providing a fast and effective solution.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章、緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究目的 6 第二章、研究方法 8 2.1 QSFP介紹與散熱路徑 8 2.2 模型設計與設置條件 13 2.2.1 QSFP模型說明 14 2.2.2 散熱器設計 19 2.2.3 模型修改 21 2.2.4 方程式 26 2.2.5 模擬條件 26 2.2.6 風洞設置條件 27 2.2.7 監控點 27 2.2.8 網格獨立性測試 28 2.3 接觸熱阻 31 2.3.1 接觸熱阻的模型說明 31 2.3.2 接觸熱阻建模方式 32 2.3.3 接觸熱阻的建模方法結果 36 2.3.4 Plug-Cage之間的接觸熱阻 38 2.3.5 接觸熱阻設定 39 2.4 田口法 41 2.4.1 篩選控制因子 41 2.4.2 田口直交表配置 43 2.5 模擬軟體 45 2.5.1 Simcenter Flotherm 45 2.5.2 Minitab 46 第三章、結果與討論 47 3.1 無散熱器之結果 47 3.2 加入散熱器之結果 50 3.3 散熱器對內部監控點之溫度差異 53 3.4 田口法之結果 55 3.5 田口法結果討論 61 第四章、結論與未來展望 70 4.1 結論 70 4.2 未來展望 71 參考文獻 72

    1. Lukasik, S. (2010). Why the Arpanet was built. IEEE Annals of the History of Computing, 33(3), 4-21.
    2. Postel, J. (1981). NCP/TCP transition plan (No. rfc801).
    3. Cerf, V., & Kahn, R. (1974). A protocol for packet network intercommunication. IEEE Transactions on communications, 22(5), 637-648.
    4. Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H. F., & Secret, A. (1994). The world-wide web. Communications of the ACM, 37(8), 76-82.
    5. Haken, H. (1970). Laser theory. In Light and Matter Ic/Licht und Materie Ic (pp. 1-304). Springer, Berlin, Heidelberg.
    6. Chow, W. W., Koch, S. W., & Sargent, M. I. (2012). Semiconductor-laser physics. Springer Science & Business Media.
    7. Peng, Z., Guiming, H., & Liwu, Z. (2003, December). 1000Base-T SFP. In Proceedings of the 5th Electronics Packaging Technology Conference (EPTC 2003) (pp. 401-404). IEEE.
    8. Kim, D., Shim, J., Keh, Y. C., & Park, M. (2006). Design and fabrication of a transmitter optical subassembly (TOSA) in 10-Gb/s small-form-factor pluggable (XFP) transceiver. IEEE Journal of selected topics in quantum electronics, 12(4), 776-782.
    9. Romero, A., & Kipp, S. (2012, May). Cooling 8× 100GbE switch blades with high power optical modules. In 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (pp. 1327-1333). IEEE.
    10. Tang, G., Li, C., Zhang, X., & Rhee, D. M. (2015, December). Thermal management solutions and design guidelines for silicon based photonic integrated modules. In 2015 IEEE 17th Electronics Packaging and Technology Conference (EPTC) (pp. 1-6). IEEE.
    11. Mack, B., Engineer, S. T., & Graham, T. (2018). Thermal Interface for Pluggable Optics
    Modules. Engineering Edge Vol. 7 Iss
    12. Baris , D. , Giovanni, G., Mark, N., Ray, N., Anderson, T. ,Attila, A., Jeffery, M., Hasan, A., Chris, K., Vivek, S., Scott, S., Fadi, D., Hani D., Burrell B., Newman, C.,(2021, January) Optimizing QSFP-DD Systems to Achieve at Least 25 Watt Thermal Port Performance
    13. Chiang, K. T. (2005). Optimization of the design parameters of Parallel-Plain Fin heat sink module cooling phenomenon based on the Taguchi method. International communications in heat and mass transfer, 32(9), 1193-1201.
    14. Huang, D. S., Lin, M. T., Liao, Y. S., Hsu, F. C., Wang, Y. T., & Kuo, F. J. (2014, April). Evaluating heat dissipation in edge-lit LED backlight module using Taguchi method. In 2014 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP) (pp. 1-5). IEEE.
    15. Huang, D. S., Tu, W. B., Zhang, X. M., Tsai, L. T., Wu, T. Y., & Lin, M. T. (2016). Using Taguchi method to obtain the optimal design of heat dissipation mechanism for electronic component packaging. Microelectronics Reliability, 65, 131-141.
    16. https://en.wikipedia.org/wiki/Small_form-factor_pluggable_transceiver
    17. Mack, B., & Graham, T. (2016, March). Thermal specifications for pluggable optics modules. In 2016 32nd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM) (pp. 133-142). IEEE.
    18. Bar-Cohen, A., Iyengar, M., & Kraus, A. D. (2003). Design of optimum plate-fin natural convective heat sinks. J. Electron. Packag., 125(2), 208-216.
    19. D. Agonafer, L. Gan-Li and D.B. Spalding. “The LVEL Turbulence Model for
    Conjugate Heat Transfer at Low Reynolds Numbers”. EEP-Vol. 18, Application of CAE/
    CAD Electronic Systems. ASME 1996.
    20. Parker Chomerics. Thermal Interface Materials For Electronics Cooling.
    21. Karna, S. K., & Sahai, R. (2012). An overview on Taguchi method. International journal of engineering and mathematical sciences, 1(1), 1-7.
    22. https://www.efd.com.tw/simcenter-flotherm.html

    QR CODE
    :::