| 研究生: |
洪培修 Pei-Hsiu Hung |
|---|---|
| 論文名稱: |
K頻段高均勻度微波材料處理系統之模擬研究與實用驗證 Simulation study and practical verification of K-band high-uniformity microwave processing system |
| 指導教授: |
陳仕宏
Shih-Hung Chen |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 微波材料處理系統 、圓極化天線 、分布作用振盪器 |
| 外文關鍵詞: | microwave processing system, circularly polarized horn antenna, extended interaction oscillator |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
使用微波對介電材料進行熱處理已被廣泛應用於科學研究及材料製程上,而微波加熱速率正比於操作頻率及電磁場強度,此高頻、高功率的需求使得K-band EIO很適合作為微波材料處理系統的微波源。本文探討之EIO腔體採用具易加工及高功率乘載能力之雙重入式方形平台耦合腔作為慢波結構,由模擬及實測顯示,經調整適當的耦合孔位置及寬度可使此EIO於單模(0-mode)並穩定操作,經實測證實此EIO在電子束電壓17.4 kV、電子束發射電流550 mA的操作條件下,輸出功率可達1.776 kW,電子效率達18.56 %,共振頻為24.324 GHz。
當以線性極化波對介電質進行加熱時,會因極化電荷屏蔽效應而導致加熱效果不均勻,尤其在處理高介電常數和非等軸比形狀的樣品時特別嚴重,此負面效應在可透過採用圓極化波來獲得改善。本文探討之單脊式K-band圓極化號角天線具有良好的極化轉換性能及易製性,模擬及實測證實此圓極化天線在23.5 GHz ~24.5 GHz之頻率範圍區間,反射損失低於-20 dB、指向軸長比低於0.7 dB且天線增益大於20 dB,此新設計之圓極化號角天線結構簡單並較其他形式極化器適用於高功率操作。
經由模擬方式驗證,高頻及高功率之圓極化波可顯著提升加熱速率及均勻性,使K-band EIO及圓極化天線適合應用於微波材料處理系統,更可廣泛應用於通訊系統中。
Microwave heating for dielectric material processing havs been widely employed in scientific research and manufacturing. Microwave heating rate is proportional to the operating frequency and the intensity of the electromagnetic field. The high frequency and high-power requirements make K-band extended interaction oscillators (EIO) a suitable candidate for microwave processing systems. A square doubly reentrant coupled cavity is proposed as a slow-wave resonant structure in K-band EIO in this study due to its easy fabrication and high-power capability. The EIO is designed to be operated at single 0-mode, and the simulation results show that the competing π/5-mode can be effectively suppressed by properly choosing the width and location of the output coupler. A stable, single-mode and high-performance operation of EIO is thus successfully demonstrated by simulation and experiments in the paper. The experimental measurement gives maximum 1.776 kW output power (18.56 % electronic efficiency) and wave frequency 24.324 GHz at beam voltage 17.4 kV and beam current 550 mA.
Polarization-charge shielding may result in uneven power deposition in the samples when a linearly polarized wave is used, especially for samples with a relatively high permittivity and particular shape of the aspect ratio. Uneven heating and excessive temperature spread during microwave processing can be remedied by using a circularly polarized wave. A single-ridged K-band circularly polarized horn antenna offering excellent performance has been developed by improving the polarization conversion and manufacturing complexity. The numerical and experimental results are consistent showing the performance of the circularly polarized horn antenna to be sufficient to meet the requirements of K-band microwave processing systems with <-20 dB return loss, <0.7 dB axial ratio at the boresight direction, and >20 dB power gain in the frequency range from 23.5 GHz to 24.5 GHz. The newly designed circularly polarized horn antenna has a simple structure and outperforms many existing circular polarization devices in high-power operations.
It has been verified by simulation that a circularly polarized wave with high-frequency and high-power can significantly improve the heating rate and uniformity. These properties make microwave devices such as K-band EIOs and circularly polarized antennas suitable for use in microwave processing systems. These microwave devices can also be widely applied in communication systems.
參 考 文 獻
[1] A.V. Gaponov-Grekhov and V.L. Granatstein, Applications of high power microwaves, Artech House, Boston, MA, 1994.
[2] S. Jojo and R. Mahendran, "Radio frequency heating and its application in food processing: A review", International Journal of Current Agricultural Research Vol. 1, No. 9, pp. 042–046, Sep. 2013.
[3] W. G. Kauman, "High-frequency electric current for drying of wood – Historical perspectives", H. Resch, Maderas. Ciencia y tecnología Vol. 8, No. 2, pp.67–82, Jan. 2006.
[4] M. Oghbaei and O. Mirzaee, "Microwave versus conventional sintering: A review of fundamentals, advantages and applications", Journal of Alloys and Compounds 494, pp.175–189, 2010.
[5] Y. V. Bykov, K. I. Rybakov, and V. E. Semenov, "High-temperature microwave processing of materials", Journal of Physics D: Appl. Phys. Vol. 34, R55–R75, Jun. 2001.
[6] D. Agrawal, "Microwave sintering of ceramics, composites and metallic materials, and melting of glasses", Transactions of the Indian Ceramic Society, Vol. 65, No. 3, pp. 129–144, Sep. 2006.
[7] M. S. Lin, S. M. Lin, W. Y. Chiang, L. R. Barnett, and K. R. Chu, "Effects of polarization-charge shielding in microwave heating", Physics of Plasmas Vol. 22, No. 8, Jul. 2015.
[8] W. Y. Chiang, M. H. Wu, K. L. Wu, M. H. Lin, H. H. Teng, Y. F. Tsai, C. C. Ko, E. C. Yang, J. A. Jiang, L. R. Barnett, and K. R. Chu, "A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber", Rev. Sci. Instrum. Vol. 85, No. 8, Jul. 2014.
[9] P. Piyasena, C. Dussault, T. Koutchma, H. S. Ramaswamy, and G. B. Awuah, "Radio Frequency Heating of Foods: Principles, Applications and Related Properties - A Review", Crit. Rev. Food Sci. Nutr. 43, pp. 587–606, 2003.
[10] A.S. Gilmour, Jr, Microwave Tubes, Norwood, MA, USA: Artech House, 1986.
[11] M. Chodorow and T. Wessel-Gerg, "A high-efficiency klystron with distributed interaction", IRE Trans. Electronic Devices, Vol. 8, No. 1, pp. 44–55, Jan. 1961.
[12] M. Chodorow and B. Kulke, "An extended-interaction klystron: Efficiency and bandwidth", IEEE Trans. Electron Device, Vol. 13, No. 4, pp. 439–447, Apr. 1966.
[13] G. Dohler, D. Gagne, D. Gallagher and R. Moats, "Serpentine waveguide TWT," 1987 International Electron Devices Meeting, Washington, DC, USA, pp. 485-488, Dec. 1987.
[14] W. Zhenhua, Z. Kaichun and L. Shenggang, "The preliminary experiment of Ka-band pulsed folded waveguide extended interaction oscillator", 35th International Conference on Infrared, Millimeter, and Terahertz Waves, Rome, pp. 1-2, Sep. 2010.
[15] A.S. Gilmour, Jr, Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers, and Gyrotrons. Norwood, MA, USA: Artech House, 2011.
[16] Y. Zhong, Y. Wang, C. Ruan, S. Wang and W. Liu, " Structure design and simulation of extended interaction oscillator", 2013 IEEE 14th International Vacuum Electronics Conference (IVEC), pp. 1-2, 2013
[17] L.M. Chen, H.Z. Guo, H.Y. Chen, M.H. Tsao, T.T. Yang, Y.C. Tsai, and K.R. Chu, "An extended interaction oscillator based on a complex resonator structure", IEEE Trans. Plasma Sci., vol. 28, no. 3, pp.626–632, Jun. 2000.
[18] N. Yoneda, M. Miyazaki, H. Matsumura, and M. Yamato, "A design of novel grooved circular waveguide polarizers", IEEE Trans. Microwave Theory Tech., Vol. 48, No. 12, pp. 2446–2452, Dec. 2000.
[19] N. Yoneda, M. Miyazaki, T. Horie, and H. Satou, "Mono-grooved circular waveguide polarizers", IEEE MTT-S Int. Microwave Symp. Dig., pp. 821–824, Jun. 2002.
[20] G. Bertin, B. Piovano, L. Accatino, and M. Mongiardo, "Full-wave design and optimization of circular waveguide polarizers with elliptical irises", IEEE Trans. Microwave Theory Tech., Vol. 50, No. 4, pp. 1077–1083, Apr. 2002.
[21] N. C. Albertsen and P. Skov-Madsen, "A compact septum polarizer", IEEE Trans. Microwave Theory Tech., Vol. 31, No. 8, pp. 654–660, Aug. 1983.
[22] J. Esteban and J. M. Rebollar, "Field theory CAD of septum OMT-polarizers", IEEE AP-S Symp. Dig., pp. 2146-2149, Jun. 1992.
[23] Ilkyu Kim and Yahya Rahmat-Samii, "Revisiting stepped septum circular polarizer using full-wave simulations", IEEE AP-S Symp., pp. 919–921, Jul. 2011.
[24] T. L. Zkang, Z. H. Yan, "A Ka dual-band circular waveguide polarizer", IEEE Trans. Microwave Theory Tech., Oct. 2006.
[25] S. W. Wang, C. H. Chien, C. L. Wang, "A circular polarizer designed with a dielectric septum loading", IEEE Trans. Microwave Theory Tech., Vol. 52, No. 7, pp. 1719–1723, Jul. 2004.
[26] T.H. Chang, L.R. Barrnett, K.R. Chu, F. Tai, and C.L. Hsu, "A dual-function circular polarization converter for microwave/plasma processing systems", Rev. Sci. Instrum. Vol. 70, No. 2, Feb. 1999.
[27] Y. Zhou, H. Wang, J. Li, and H. Jin, "A compact high efficiency power divider/combiner based on quadruple-ridged waveguide", IEICE Electronics Express, Vol. 13, No. 9, May 2016.
[28] J. H. Hwang, and Y. Oh, "Compact orthomode transducer using single-ridged triangular waveguides", IEEE Microwave and Wireless Components Letters, Vol. 21, No. 8, pp. 412–414, Aug. 2011.
[29] Y. Du, K. Zhao, and Z. J. Zeng, "Design and simulation of an UWB single-ridge waveguide band-pass filter", IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, pp. 278–281, Oct. 2013.
[30] S. J. Cook, "Circular polarity elliptical horn antenna", U.S. Patent, Patent No. 7239285 B2, Jul. 2007.
[31] 楊祥林、張兆鏜、張祖舜,微波器件原理,電子工業出版社,北京,1985。
[32] 電子管設計手冊編輯委員會,大功率速調管設計手冊,國防工業出版社,北京,1979。
[33] G.M. Branch, "Electron beam coupling in interaction gaps of cylindrical symmetry", IRE Trans. Electron Devices, Vol. 8, No. 3, pp. 193–207, May 1961.
[34] J.R.M. Vaughan, "A model for the klystron cavity gap", IEEE Trans. Electron Devices, Vol. 32, No. 11, pp. 193–207, Nov. 1985.
[35] E.J. Craig, "The beam-loading admittance of gridless klystron gaps", IEEE Trans. Electron Devices, Vol. 14, No. 5, pp. 273–278, May. 1967.
[36] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed., John Wiley & Sons, Inc , 2005.
[37] 李宗謙,余京兆,微波技術,第一版,西安交通大學出版社,1991。
[38] D. M. Pozar, Microwave Engineering, 4th ed., John Wiley & Sons, Inc., 2012.